286 research outputs found

    The lesson from flight MH17 is that in a time of war, safety must come before the profits of airlines

    Get PDF
    The crash of Malaysia Airlines Flight 17 (MH17) has provoked intense debate over the conflict in eastern Ukraine, but what lessons should the crash have for aviation safety? Simon Bennett writes that we must learn from the experience of MH17 and other incidents in the past. He argues that there is always a trade-off within commercial aviation between the safety of passengers and the profits of airlines, and that aviation authorities should ensure an exclusion zone is placed around trouble spots in future to ensure passenger safety

    More Security, less Harm? Exploring the Link between Security Measures and Direct Costs of Cyber Incidents within Firms using PLS-PM

    Get PDF
    As one of the first articles to empirically explore the direct costs of cyber incidents, our research provides novel and significant insights into the structural links between cyber incidents, exposure, and security within firms, as well as the related technical consequences. We employ an explorative approach, which is based on the causal information/cyber risk models proposed by Cohen et al. and Woods & Böhme, as well as PLS-modeling to analyze data from 493 firms that have incurred direct costs from their most severe cyber incident in the last 12 months. These data are part of a larger dataset, based on a representative and stratified random sample of 5,000 organizations that participated in a survey in 2018/19. Based on our model, we discuss the results and derive implications that are highly relevant to the alignment of IT (security) strategy and management. Furthermore, we identify gaps to be assessed in future research

    Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial

    Get PDF
    Background: The exponential growth of image-based diagnostic and minimally invasive interventions requires a detailed three-dimensional anatomical knowledge and increases the demand towards the undergraduate anatomical curriculum. This randomized controlled trial investigates whether musculoskeletal ultrasound (MSUS) or arthroscopic methods can increase the anatomical knowledge uptake. Methods: Second-year medical students were randomly allocated to three groups. In addition to the compulsory dissection course, the ultrasound group (MSUS) was taught by eight, didactically and professionally trained, experienced student-teachers and the arthroscopy group (ASK) was taught by eight experienced physicians. The control group (CON) acquired the anatomical knowledge only via the dissection course. Exposure (MSUS and ASK) took place in two separate lessons (75 minutes each, shoulder and knee joint) and introduced standard scan planes using a 10-MHz ultrasound system as well as arthroscopy tutorials at a simulator combined with video tutorials. The theoretical anatomic learning outcomes were tested using a multiple-choice questionnaire (MCQ), and after cross-over an objective structured clinical examination (OSCE). Differences in student's perceptions were evaluated using Likert scale-based items. Results: The ASK-group (n = 70, age 23.4 (20--36) yrs.) performed moderately better in the anatomical MC exam in comparison to the MSUS-group (n = 84, age 24.2 (20--53) yrs.) and the CON-group (n = 88, 22.8 (20--33) yrs.; p = 0.019). After an additional arthroscopy teaching 1 % of students failed the MC exam, in contrast to 10 % in the MSUS- or CON-group, respectively. The benefit of the ASK module was limited to the shoulder area (p < 0.001). The final examination (OSCE) showed no significant differences between any of the groups with good overall performances. In the evaluation, the students certified the arthroscopic tutorial a greater advantage concerning anatomical skills with higher spatial imagination in comparison to the ultrasound tutorial (p = 0.002; p < 0.001). Conclusions: The additional implementation of arthroscopy tutorials to the dissection course during the undergraduate anatomy training is profitable and attractive to students with respect to complex joint anatomy. Simultaneous teaching of basic-skills in musculoskeletal ultrasound should be performed by medical experts, but seems to be inferior to the arthroscopic 2D-3D-transformation, and is regarded by students as more difficult to learn. Although arthroscopy and ultrasound teaching do not have a major effect on learning joint anatomy, they have the potency to raise the interest in surgery

    A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    Get PDF
    We report five Local Volume dwarf galaxies (two of which are presented here for the first time) uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an Hα\alpha-derived velocity consistent with the coincident HI cloud, confirming their association, the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction (MHI/MstarM_{HI}/M_{star}) of the five dwarfs are generally consistent with that of dwarf irregular galaxies in the Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC HVC274.68+74.70-123) has a very high MHI/MstarM_{HI}/M_{star}\sim40. Despite the heterogenous nature of our search, we demonstrate that the current dwarf companions to UCHVCs are at the edge of detectability due to their low surface brightness, and that deeper searches are likely to find more stellar systems. If more sensitive searches do not reveal further stellar counterparts to UCHVCs, then the dearth of such systems around the Local Group may be in conflict with Λ\LambdaCDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte

    Geometric Quantum Mechanics

    Full text link
    The manifold of pure quantum states is a complex projective space endowed with the unitary-invariant geometry of Fubini and Study. According to the principles of geometric quantum mechanics, the detailed physical characteristics of a given quantum system can be represented by specific geometrical features that are selected and preferentially identified in this complex manifold. Here we construct a number of examples of such geometrical features as they arise in the state spaces for spin-1/2, spin-1, and spin-3/2 systems, and for pairs of spin-1/2 systems. A study is undertaken on the geometry of entangled states, and a natural measure is assigned to the degree of entanglement of a given state for a general multi-particle system. The properties of this measure are analysed for the entangled states of a pair of spin-1/2 particles. With the specification of a quantum Hamiltonian, the resulting Schrodinger trajectory induces a Killing field, which is quasiergodic on a toroidal subspace of the energy surface. When the dynamical trajectory is lifted orthogonally to Hilbert space, it induces a geometric phase shift on the wave function. The uncertainty of an observable in a given state is the length of the gradient vector of the level surface of the expectation of the observable in that state, a fact that allows us to calculate higher order corrections to the Heisenberg relations. A general mixed state is determined by a probability density function on the state space, for which the associated first moment is the density matrix. The advantage of a general state is in its applicability in various attempts to go beyond the standard quantum theory.Comment: 27 pages. Extended with additional materia

    Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass

    Full text link
    The fluctuation-dissipation theorem (FDT), connecting dielectric susceptibility and polarization noise was studied in glycerol below its glass transition temperature Tg. Weak FDT violations were observed after a quench from just above to just below Tg, for frequencies above the alpha peak. Violations persisted up to 10^5 times the thermal equilibration time of the configurational degrees of freedom under study, but comparable to the average relaxation time of the material. These results suggest that excess energy flows from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4 pages, 5 PS figures, RevTe

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    A three-dimensional numerical model of borehole heat exchanger heat transfer and fluid flow

    Get PDF
    Common approaches to the simulation of borehole heat exchangers assume heat transfer within the circulating fluid and grout to be in a quasi-steady state and ignore axial conduction heat transfer. This paper presents a numerical model that is three-dimensional, includes explicit representations of the circulating fluid and other borehole components, and so allows calculation of dynamic behaviours over short and long timescales. The model is formulated using a finite volume approach using multi-block meshes to represent the ground, pipes, fluid and grout in a geometrically correct manner. Validation and verification exercises are presented that use both short timescale data to identify transport delay effects, and long timescale data to examine the modelling of seasonal heat transfer and show the model is capable of predicting outlet temperatures and heat transfer rates accurately. At long timescales borehole heat transfer seems well characterized by the mean fluid and borehole wall temperature if the fluid circulating velocity is reasonably high but at lower flow rates this is not the case. Study of the short timescale dynamics has shown that nonlinearities in the temperature and heat flux profiles are noticeable over the whole velocity range of practical interest. The importance of representing the thermal mass of the grout and the dynamic variations in temperature gradient as well as the fluid transport within the borehole has been highlighted. Implications for simplified modelling approaches are also discussed

    Neonatal severe bacterial infection impairment estimates in South Asia, sub-Saharan Africa, and Latin America for 2010.

    Get PDF
    BACKGROUND: Survivors of neonatal infections are at risk of neurodevelopmental impairment (NDI), a burden not previously systematically quantified and yet important for program priority setting. Systematic reviews and meta-analyses were undertaken and applied in a three-step compartmental model to estimate NDI cases after severe neonatal bacterial infection in South Asia, sub-Saharan Africa, and Latin America in neonates of >32 wk gestation (or >1,500 g). METHODS: We estimated cases of sepsis, meningitis, pneumonia, or no severe bacterial infection from among estimated cases of possible severe bacterial infection ((pSBI) step 1). We applied respective case fatality risks ((CFRs) step 2) and the NDI risk among survivors (step 3). For neonatal tetanus, incidence estimates were based on the estimated deaths, CFRs, and risk of subsequent NDI. RESULTS: For 2010, we estimated 1.7 million (uncertainty range: 1.1-2.4 million) cases of neonatal sepsis, 200,000 (21,000-350,000) cases of meningitis, 510,000 cases (150,000-930,000) of pneumonia, and 79,000 cases (70,000-930,000) of tetanus in neonates >32 wk gestation (or >1,500 g). Among the survivors, we estimated moderate to severe NDI after neonatal meningitis in 23% (95% confidence interval: 19-26%) of survivors, 18,000 (2,700-35,000) cases, and after neonatal tetanus in 16% (6-27%), 4,700 cases (1,700-8,900). CONCLUSION: Data are lacking for impairment after neonatal sepsis and pneumonia, especially among those of >32 wk gestation. Improved recognition and treatment of pSBI will reduce neonatal mortality. Lack of follow-up data for survivors of severe bacterial infections, particularly sepsis, was striking. Given the high incidence of sepsis, even minor NDI would be of major public health importance. Prevention of neonatal infection, improved case management, and support for children with NDI are all important strategies, currently receiving limited policy attention

    Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity

    Get PDF
    Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation
    corecore