2,316 research outputs found

    International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999

    Get PDF
    Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.Privatization, deregulation, liberalization, infrastructure, International Monetary Fund (IMF), World Bank, Multileral Institutions, Development, Reform, Globalization, Adoption, International

    It\u27s Your Land, and My Land

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1108/thumbnail.jp

    Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays

    Get PDF
    We demonstrate experimentally the localization of broad optical beams in periodic arrays of optical waveguides with defocusing nonlinearity. This observation in optics is linked to nonlinear self-trapping of Bose-Einstein-condensed atoms in stationary periodic potentials being associated with the generation of truncated nonlinear Bloch states, existing in the gaps of the linear transmission spectrum. We reveal that unlike gap solitons, these novel localized states can have an arbitrary width defined solely by the size of the input beam while independent of nonlinearity

    Book Reviews

    Get PDF

    Evolving rules for document classification

    Get PDF
    We describe a novel method for using Genetic Programming to create compact classification rules based on combinations of N-Grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that because the induced rules are meaningful to a human analyst they may have a number of other uses beyond classification and provide a basis for text mining applications

    Using of small-scale quantum computers in cryptography with many-qubit entangled states

    Full text link
    We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network

    More on Tachyon Cosmology in De Sitter Gravity

    Full text link
    We aim to study rolling tachyon cosmological solutions in de Sitter gravity. The solutions are taken to be flat FRW type and these are not time-reversal symmetric. We find that cosmological constant of our universe has to be fine-tuned at the level of the action itself, as in KKLT string compactification. The rolling tachyon can give rise to required inflation with suitable choice of the initial conditions which include nonvanishing Hubble constant. We also determine an upper bound on the volume of the compactification manifold.Comment: 15pp, 3 figures; references adde

    Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles

    Get PDF
    This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved

    Observing Long Cosmic Strings Through Gravitational Lensing

    Full text link
    We consider the gravitational lensing produced by long cosmic strings formed in a GUT scale phase transition. We derive a formula for the deflection of photons which pass near the strings that reduces to an integral over the light cone projection of the string configuration plus constant terms which are not important for lensing. Our strings are produced by performing numerical simulations of cosmic string networks in flat, Minkowski space ignoring the effects of cosmological expansion. These strings have more small scale structure than those from an expanding universe simulation - fractal dimension 1.3 for Minkowski versus 1.1 for expanding - but share the same qualitative features. Lensing simulations show that for both point-like and extended objects, strings produce patterns unlike more traditional lenses, and, in particluar, the kinks in strings tend to generate demagnified images which reside close to the string. Thus lensing acts as a probe of the small scale structure of a string. Estimates of lensing probablity suggest that for string energy densities consistant with string seeded structure formation, on the order of tens of string lenses should be observed in the Sloan Digital Sky Survey quasar catalog. We propose a search strategy in which string lenses would be identified in the SDSS quasar survey, and the string nature of the lens can be confirmed by the observation of nearby high redshift galaxies which are also be lensed by the string.Comment: 24 pages revtex with 12 postscript firgure
    • 

    corecore