We consider the gravitational lensing produced by long cosmic strings formed
in a GUT scale phase transition. We derive a formula for the deflection of
photons which pass near the strings that reduces to an integral over the light
cone projection of the string configuration plus constant terms which are not
important for lensing. Our strings are produced by performing numerical
simulations of cosmic string networks in flat, Minkowski space ignoring the
effects of cosmological expansion. These strings have more small scale
structure than those from an expanding universe simulation - fractal dimension
1.3 for Minkowski versus 1.1 for expanding - but share the same qualitative
features. Lensing simulations show that for both point-like and extended
objects, strings produce patterns unlike more traditional lenses, and, in
particluar, the kinks in strings tend to generate demagnified images which
reside close to the string. Thus lensing acts as a probe of the small scale
structure of a string. Estimates of lensing probablity suggest that for string
energy densities consistant with string seeded structure formation, on the
order of tens of string lenses should be observed in the Sloan Digital Sky
Survey quasar catalog. We propose a search strategy in which string lenses
would be identified in the SDSS quasar survey, and the string nature of the
lens can be confirmed by the observation of nearby high redshift galaxies which
are also be lensed by the string.Comment: 24 pages revtex with 12 postscript firgure