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Evolving Rules for Document Classification  

Laurence Hirsch1, Masoud Saeedi1, and Robin Hirsch2

1School of Management, Royal Holloway University of London, Surrey, TW20 OEX, UK 
2University College London, Gower Street, London, WC1E 6BT, UK 

Abstract. We describe a novel method for using Genetic Programming to 
create compact classification rules based on combinations of N-Grams 
(character strings).  Genetic programs acquire fitness by producing rules that 
are effective classifiers in terms of precision and recall when evaluated against 
a set of training documents.  We describe a set of functions and terminals and 
provide results from a classification task using the Reuters 21578 dataset.  We 
also suggest that because the induced rules are meaningful to a human analyst 
they may have a number of other uses beyond classification and provide a basis 
for text mining applications. 

1 Introduction 

Automatic text classification is the activity of assigning pre-defined category labels to 
natural language texts based on information found in a training set of labelled 
documents.  In recent years it has been recognised as an increasingly important tool 
for handling the exponential growth in available online texts and we have seen the 
development of many techniques aimed at the extraction of features from a set of 
training documents, which may then be used for categorisation purposes.   

In the 1980’s a common approach to text classification involved humans in the 
construction of a classifier, which could be used to define a particular text category.  
Such an expert system would typically consist of a set of manually defined logical 
rules, one per category, of type  

 
if {DNF formula} then {category} 

 
A DNF (“disjunctive normal form”) formula is a disjunction of conjunctive 

clauses; the document is classified under a category if it satisfies the formula i.e. if it 
satisfies at least one of the clauses.  An often quoted example of this approach is the 
CONSTRUE system [1], built by Carnegie Group for the Reuters news agency.  A 
sample rule of the type used in CONSTRUE to classify documents in the ‘wheat’ 
category of the Reuters dataset is illustrated below. 

 



if ((wheat & farm) or   
(wheat & commodity) or   
(bushels & export) or   
(wheat & tonnes) or   
(wheat & winter & ¬ soft))   
then  
WHEAT  else  ¬ WHEAT   

 
Such a method, sometimes referred to as ‘knowledge engineering’, provides 

accurate rules and has the additional benefit of being human understandable.  That is, 
the definition of the category is meaningful to a human, thus producing additional 
uses of the rule including verification of the category.  However the disadvantage is 
that the construction of such rules requires significant human input and the human 
needs some knowledge concerning the details of rule construction as well as domain 
knowledge [2].   

Since the 1990’s the machine learning approach to text categorisation has become 
the dominant one.  In this case the system requires a set of pre-classified training 
documents and automatically produces a classifier from the documents.  The domain 
expert is needed only to classify a set of existing documents.  Such classifiers, usually 
built on the frequency of particular words in a document (sometimes called ‘bag of 
words’), are based on two empirical observations regarding text: 

1. the more times a word occurs in a document, the more relevant it is to the 
topic of the document. 

2. the more times the word occurs throughout the documents in the collection the 
more poorly it discriminates between documents. 

A well known approach for computing word weights is the term frequency inverse 
document frequency (tf-idf) weighting [3] which assigns the weight to a word in a 
document in proportion to the number of occurrences of the word in the document 
and in inverse proportion to the number of documents in the collection for which the 
word occurs at least once.  A classifier can be constructed by mapping a document to 
a high dimensional feature vector, where each entry of the vector represents the 
presence or absence of a feature [4].  In this approach, text classification can be 
viewed as a special case of the more general problem of identifying a category in a 
space of high dimensions so as to define a given set of points in that space.  Such 
sparse vectors can then be used in conjunction with many learning algorithms for 
computing the closeness of two documents and quite sophisticated geometric systems 
have been devised [5].   

Although this method has produced accurate classifiers there are a number of 
drawbacks from the machine learning approach as compared to a rule based one. 

1. All the word order information is lost; only the frequency of the terms in the 
document is stored.   

2. The approach cannot normally identify word combinations, phrases or multi-
word units e.g. ‘information processing’ [6]. 

3. If word stemming is used inflection information is also lost. 
4. The classifier (the vector of weights) is not human understandable. 

In this paper we describe a method to evolve compact human understandable rules 
using only a set of training documents.  The system uses genetic programming 



(GP)[7] to produce a synthesis of machine learning and knowledge engineering with 
the intention of incorporating advantageous attributes from both.  The rules produced 
by the GPs are based on N-Grams (sequences of N letters) and are able to use a wide 
variety of features including word combinations and negative information for 
discrimination purposes.  In the next section, we review previous classification work 
with N-Grams and with phrases.  We then provide information concerning the 
implementation of our application and the initial results we have obtained on a text 
classification task.  Although GP has been used in a textual environment [8,9] it has 
not previously been used to evolve compressed classifiers based on evolving N-Gram 
patterns. 

1.1 N-Grams 

A character N-Gram is an N-character slice of a longer string.  For example the 
word INFORM produces the 5-grams _INFO, INFOR, NFORM, FORM_ where the 
underscore represents a blank.  The key benefit of N-Gram-based matching derives 
from its very nature: since every string is decomposed into small parts any errors that 
are present tend to affect only a limited number of those parts leaving the remainder 
intact.  The N-Grams for related forms of a word (e.g., ‘information’, ‘informative’, 
‘informing’, etc.) automatically have a lot in common.  If we count N-Grams that are 
common to two strings, we get a measure of their similarity that is resistant to a wide 
variety of grammatical and typographical errors [10,11,12].  A useful property of N-
Grams is that the lexicon obtained from the analysis of a text in terms of N-Grams of 
characters cannot grow larger than the size of the alphabet to the power of N.  
Furthermore, because most of the possible sequences of N characters rarely or never 
occur in practice for N>2, a table of the N-Grams occurring in a given text tends to be 
sparse, with the majority of possible N-Grams having a frequency of zero even for 
very large amounts of texts.  Tauritz [13] and later Langdon [14] used this property to 
build an: adaptive information filtering system based on weighted trigram (N=3) 
analysis in which genetic algorithms were used to determine weight vectors.  An 
interesting modification of N-Grams is to generalise N-Grams to substrings which 
need not be contiguous.  Lodhi et al. [15] define a learning algorithm that uses non-
contiguous substrings of N characters, but with a penalty for any gaps occurring 
between the N characters.   

1.2 Phrases 

The notion of N-Grams of words i.e. sequences or occurrences of N contiguous 
and non-contiguous words (with N typically equals to 2, 3, 4 or 5) has produced good 
results both in language identification, speech analysis and in several areas of 
knowledge extraction from text [16,17,18].  Pickens and Croft [6] make the 
distinction between ‘adjacent phrases’ where the phrase words must be adjacent and 
Boolean phrases where the phrase words are present anywhere in the document.  They 
found that adjacent phrases tended to be better than Boolean phrases in terms or 
retrieval relevance but not in all cases.  Restricting a search to only adjacent phrases 



means that some retrieval information is lost.  The implementation described below is 
able to make use of both adjacent and Boolean phrases if they are found to aid 
discrimination between documents. 

2 Our Genetic Programming Approach 

When building text classifiers there are usually a variety of options regarding pre-
processing of documents and particular parameters values.  Examples include whether 
to remove stop words, to stem words to a common form, to use words or N-Grams as 
terms and whether to search for single terms, phrases or particular sequences of terms.  
Where N-Grams or phrases are used the length of the phrase or N-Gram must also be 
determined.  Although many of these options have been researched [19] it is often the 
case that effects on the performance of the classifier will depend on the particular 
classifier and the particular text environment [20].  We have developed a GP system 
where many of these decisions are either made redundant or are taken by the 
individual GPs. 

We summarise the key features below: 
• The basic unit (or phrase unit) we use is an N-Gram (sequence of N 

characters). 
• N-Gram based rules are produced by GPs and evaluate to true or false for a 

particular document.  
• A classification rule must be evolved for each category c.  Fitness is then 

accrued for GPs producing classification rules which are true for training 
documents in c but are not true for documents outside c.  Thus the 
documents in the training set represent the fitness cases. 

2.1 Data Set 

The task involved categorising documents selected from the Reuters-21578 test 
collection, which has been a standard benchmark for the text categorisation tasks 
throughout the last ten years [20].  In our experiments we use the “ModApt´e split”, a 
partition of the collection into a training set and a test set that has been widely 
adopted by text categorisation experimenters.  The top 10 categories are also widely 
used and these are the categories we adopt here.   

2.2 Pre-processing 

Before we start the evolution of classification rules a number of pre-processing 
steps are made. 

1. All the text in the document collection is placed in lower case.   
2. Numbers are replaced by a special character and non-alphanumeric characters 

are replaced by a second special character.   



3. All the documents in the collection are searched for N-Grams which are then 
stored in sets for size of N=2 to N=max_size (where max_size can be the 
longest word in the collection).  The size of these sets is reduced by requiring 
that an N-Gram occur at least 4 times before being included in a set. 

 
The use of N-Grams as features makes word stemming unnecessary and the natural 

screening process provided by the fitness test means that a stop list is not required.  
Note that only step 3 is actually essential for the GP system to run.  Including upper 
case letters and numbers would significantly increase the search space of the GP 
system but could provide useful features for discriminating between documents in 
particular domains. 

2.3 Fitness 

GPs are set the task of assembling single letters into N-Gram strings and then 
combining N-Grams with Boolean functions to form a rule.  The rule is then 
evaluated against the documents in the training set.  Each rule can be tested against 
any document and will return a Boolean value indicating whether the rule is true for 
that document.  An example of a rule produced by a GP evolving a classifier for the 
crude category of the Reuters 21578 is 

 
(AND (EXISTS crude) (EXISTS (OR nerg barr))) 
 

A classification rule must be evolved for each category c.   Each rule is actually a 
binary classifier; that is it will classify documents as either in the category or outside 
the category.  When evolving a rule for a particular category c the fitness depends on 
the number of documents in the category where the rule is true and the number of 
documents outside the category where the rule is true.   

In information retrieval and text categorisation the F1 measure is commonly used 
for determining classification effectiveness and has the advantage of giving equal 
weight to precision and recall [21].  F1 is given by 

ρπ
πρρπ
+

=
2),(1F  

(2) 

where:  
Recall (π )= the number of relevant documents returned/the total number 

of relevant documents in the collection 
Precision ( )= the number of relevant documents returned/the number 

of documents returned. 
 
F1 also gives a natural fitness measure for an evolving classifier.  The fitness of an 

individual GP is therefore assigned in the following way: 
1. evaluate the rule produced by the GP against all documents in the training 

set. 



2. calculate precision, recall and F1 by counting the documents where the rule 
is true in the category and outside the category for which the classifier is 
being evolved. 

3. compute standardised fitness as 1 – F1 so that 0 is given to a perfect 
classifier for that category.   

2.4 GP Types 

We use a strongly typed tree based GP [22] system with types shown in Table 1. 

Table 1: GP Types 

GP Type Description 
String A sequence of one or more characters. 
Boolean True/False: the return type of all GPs 

2.5 GP Terminals 

In our system we use the following character literals stored as string values. 
 
26 lower case alphabetic characters (a-z). 
“~” meaning the space character 
“#” meaning any number.   
“^” meaning any non-alphanumeric character. 
 

Note that for particular domains it may be useful to include numbers (still stored as 
strings), upper case characters and other special characters although this will increase 
the search space of the GP system. 

2.6 GP Functions 

The GPs are provided with protected string handling functions for combining 
characters into N-Gram strings and concatenating N-Grams into a longer N-Gram.  
Most combinations of letters above an N-Gram size of 2 are unlikely to occur in any 
text, with the majority of possible N-Grams having a frequency of zero even for very 
large amounts of texts. For example, 40 MB of text from the Wall Street Journal were 
found to contain only 2.7*105 different 5-grams out of a possible 7.5*1018, based on 
an alphabet of 27 characters [23]. We guide the GPs through the vast search space of 
possible N-Gram patterns by the provision of protected ‘EXPAND’ function. The 
function initially forms a new N-Gram by appending one N-Gram to another. The 
EXPAND function checks if the new N-Gram is in the set of N-Grams of size N 
originally extracted from all the text in the all the training documents.  If it is found 
the new N-Gram is returned.  If it is not found, i.e. the N-Gram did not occur in the 



documents of the training set, the next N-Gram in the set (in alphabetical order) is 
returned.   

We found that using an unprotected concatenation function it was quite rare for N-
Grams of size greater than 2 to be evolved.  However using the EXPAND function 
long N-Grams and words are easily and commonly evolved by combining shorter 
strings.  For example the string ‘wheat’ could be evolved in the following way 

 
(EXPAND w (EXPAND (EXPAND h e) (EXPAND a b))) 

 
The function initially creates the string ‘wheab’.  This string is not found in the set 

of N-Grams of size 5 originally extracted from the collection.  The next N-Gram in 
the set of 5-Grams is therefore returned (‘wheat’).   

Table 2. shows a basic set of GP functions for evolving classification rules.  
Although the functions ANDSTR, ORSTR, and NOTSTR are not essential as they are 
definable by the other operators, we include them as a way reducing tree sizes.  

 

Table 2: GP Functions 

Function 
Name 

No of 
Args 

Type of 
Args 

Return
Type 

Description 

EXPAND 2 String String Concatenate 2 N-Grams and return the 
nearest N-Gram of the same length 
extracted from the training data.  If 
found in the set of N-Grams extracted 
from the training data return that N-
Gram else return the next N-Gram in 
the set. 

EXISTS 1 String Boolean IF the N-Gram is found in a document 
return TRUE ELSE return FALSE 

AND 2 Boolean Boolean Return arg1 AND arg2 
OR 2 Boolean Boolean Return arg1 OR arg2 
NOT 1 Boolean Boolean Return NOT arg1 
ANDSTR 2 String Boolean IF arg1 AND arg2 are found in the 

document return TRUE ELSE return 
FALSE 

ORSTR 2 String Boolean IF arg1 OR arg2 are found in the 
document return TRUE ELSE return 
FALSE 

NOTSTR 1 String Boolean IF arg1 is NOT found in the document 
return TRUE ELSE return FALSE.   

2.7 GP Parameters 

The GP parameters used in our experiments are summarised in Table 3.   



Table 3: GP Parameters 

Parameter Value 
Population 800 
Generations 40 
Typing Strongly typed 
Creation Method Ramped half and half 
GP format Tree Based 
Selection type Tournament 
Tournament size 7 
Mutation probability 0.1 
Reproduction probability 0.1 
Crossover probability 0.8 
Elitism No 
ADF No 
Maximum tree depth at creation 9 
Maximum tree depth  17 
Maximum tree depth for mutation 4 

3 Experiments and Results 

The objective of our experiments were two fold: 
1. To evolve effective classifiers against the text dataset. 
2. To automatically produce compact human understandable rules 

with minimal features. 
 

Category crude: Reuters 21578 data

0
0.2
0.4
0.6
0.8

1

Generation 8 17 26 35

 Best Fitness
 Precision
 Recall
 F1

Fig. 1: Evolution of a rule for the Reuters 21578 Crude category 
 
Fig. 1 shows a fairly typical pattern of evolution and in this case we see the 

emergence of a useful rule after approximately 20 generations.  Precision is very high 
during the early evolution but is reduced as recall improves.  In other cases we see 
recall starting very high and reducing as precision improves.  In general we will see 



an improvement in F1 as measured against the training set and a corresponding but 
lower F1 as measured against the test set. 

A classification rule was evolved for each category by using 4 GP runs and 
selecting the best rule to emerge from the 4 runs.  The rule produced by the best 
individual for each category is shown in Table 4 together with the F1 measure (against 
the test set).  Functions are shown in upper case and N-Grams are shown in lower 
case.  The blank character is indicated by ‘~’. 

 
Table 4: Rules evolved for Reuters top 10 categories 

Name F1 The Rule 

Crude 0.826 (OR  (OR  (OR  (ORSTR arrels~ rude~) 
(EXISTS opec~)  (EXISTS energy)  (EXISTS oleum)))) 

Corn 0.835 (ORSTR aize~ corn~) 
Earn 0.857 (OR (ORSTR shr~ qt)  (EXISTS ividend)) 
Grain 0.550 (OR  (ORSTR ulture~ crop~)  (EXISTS nnes~)) 
Interest 0.569 (OR  (OR  (AND  (ORSTR engla deposit)  (OR  (NOTSTR 

vity)  (EXISTS ny)  (OR  (AND  (ORSTR lending epurcha)  
(ORSTR ~fut cut)  (AND  (OR  (ANDSTR g-t ~l)  (ORSTR 
ederal~ ~money~)  (EXISTS further)  (OR  (AND  (ORSTR 
epurc sbank)  (NOT  (EXISTS ny)  (AND  (OR  (ANDSTR 
g-t bl)  (ORSTR ngland~ ~money~)  (NOT  (EXISTS ny)))) 

money-fx 0.612 (ORSTR ~mone dollar~) 
Ship 0.745 (OR  (OR  (ORSTR trike hips~)  (ORSTR vesse river)  

EXISTS ipping~))) 
Trade 0.761 (AND  (ORSTR kore rade~)  (OR  (OR  (AND  (ORSTR 

~yeu rade~)  (ORSTR oods ficit)  (ORSTR ~yeu domes)  
(ORSTR ~bil rplus))) 

Wheat 0.663 (AND  (NOTSTR prio)   
(AND  (NOTSTR opme)  EXISTS wheat)) 

Acq 0.755 (ORSTR cqui hares) 
 
The global macro-average F1 is 0.717 which compares favourably with other 

classifiers such as [18] although we should note that this is not a strictly controlled 
comparison.  Indeed our intention at this point is not to produce the best classifier in 
terms of accuracy but to produce a good classifier which is based on a small number 
of features in a human understandable form.  Comprehensibility may be improved by 
using various forms of parsimony pressure on the GP evolution and by favouring 
longer N-Grams or words.   

4 Discussion 

Previous text classification systems have used various sets of features including 
words, word combinations and N-Grams.  The system described here is capable of 



including any or all of these where they are found to be useful for classification 
purposes.  In addition the system can easily make use of negative information via the 
inclusion of Boolean NOT functions in the rule.  The rule produced can be 
reformulated and fed directly into a database or Internet search engine to retrieve 
similar texts.  The rule is produced automatically but is somewhat similar to rules 
produced by knowledge engineering systems using human experts.  For example the 
following rule was evolved for the Reuters Trade category happened to be in DNF 
form although it was not the most effective classifier (F1 0.692). 

 
(OR  (OR  (OR  (ANDSTR llion export)  (OR  (ANDSTR 
llion surpl)  (ANDSTR ~trad mport)  (ANDSTR ~trad 
vis)  (ANDSTR ~trad yeutt))) 

 
The rule created may also be used for purposes beyond classification such as text 

mining.  For example, the regular occurrence of synonyms (different words with the 
same meaning) and homonyms (words with the same spelling but with distinct 
meanings) are key problems in the analysis of text data: in the language of relational 
databases this is a classic many-to-many relationship.  There is evidence that the rules 
evolved in our current system are using synonyms to improve the effectiveness of a 
rule, e.g.: 

 
(ORSTR aize~ corn~) 

 
Furthermore we suggest that homonyms are best discriminated by the use of 

contextual evidence, i.e. by an analysis of nearby strings in the text.  Much of this 
contextual evidence can be detected simply by the use of the Boolean operators AND, 
OR and NOT, though it may be that additional operators that impose constraints on 
the relative positions of two N-Grams in the text will allow an improved 
discrimination. 

5 Conclusions and Future Work  

We have produced a system capable of discovering rules based on a rich and varied 
set of features, which are useful to the task of discriminating between text documents.  
We suggest that there may a number of areas within automatic text analysis where the 
basic technology described here may be of use. 

We are investigating the usefulness of new GP functions: 
• Special functions for identifying word order.  For example FOLLOWS X Y 

[9] indicates that the word matched by N-Grams Y must follow the word 
matched by N-Gram X in the text of a document. 

• Kleene's star (*) could be included as a marker for an arbitrary sequence of 
characters, e.g. a*t matches any of "at", "ant" or "agony aunt" within an N-
Gram. We will also investigate the use of full regular expressions for the 
rules evolved by the GPs. 



• Functions for identifying words that are ADJACENT in the text or NEAR 
one another.  

• New functions together with numeric terminals for identifying frequency 
information may be introduced [8].  Functions such as ‘>’ return a Boolean 
value based on the frequency of a particular N-Gram in comparison to an 
integer terminal.  This frequency could be a simple count of the occurrence 
of an N-Gram in a document or a more sophisticated measure such as the 
term frequency inverse document frequency (tf-idf) described above.  

We believe that the system described here may be of particularly value when used 
in conjunction with other classification systems in a classification committee [20] 
because the method of producing the classifier is quite different to other automatic 
classifiers based on vectors of weights. 
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