3,395 research outputs found

    An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier-Stokes Equations

    Full text link
    We discuss model reduction for a particular class of quadratic-bilinear (QB) descriptor systems. The main goal of this article is to extend the recently studied interpolation-based optimal model reduction framework for QBODEs [Benner et al. '16] to a class of descriptor systems in an efficient and reliable way. Recently, it has been shown in the case of linear or bilinear systems that a direct extension of interpolation-based model reduction techniques to descriptor systems, without any modifications, may lead to poor reduced-order systems. Therefore, for the analysis, we aim at transforming the considered QB descriptor system into an equivalent QBODE system by means of projectors for which standard model reduction techniques for QBODEs can be employed, including aforementioned interpolation scheme. Subsequently, we discuss related computational issues, thus resulting in a modified algorithm that allows us to construct \emph{near}--optimal reduced-order systems without explicitly computing the projectors used in the analysis. The efficiency of the proposed algorithm is illustrated by means of a numerical example, obtained via semi-discretization of the Navier-Stokes equations

    Efficient Solution of Large-Scale Algebraic Riccati Equations Associated with Index-2 DAEs via the Inexact Low-Rank Newton-ADI Method

    Full text link
    This paper extends the algorithm of Benner, Heinkenschloss, Saak, and Weichelt: An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Applied Numerical Mathematics Vol.~108 (2016), pp.~125--142, doi:10.1016/j.apnum.2016.05.006 to Riccati equations associated with Hessenberg index-2 Differential Algebratic Equation (DAE) systems. Such DAE systems arise, e.g., from semi-discretized, linearized (around steady state) Navier-Stokes equations. The solution of the associated Riccati equation is important, e.g., to compute feedback laws that stabilize the Navier-Stokes equations. Challenges in the numerical solution of the Riccati equation arise from the large-scale of the underlying systems and the algebraic constraint in the DAE system. These challenges are met by a careful extension of the inexact low-rank Newton-ADI method to the case of DAE systems. A main ingredient in the extension to the DAE case is the projection onto the manifold described by the algebraic constraints. In the algorithm, the equations are never explicitly projected, but the projection is only applied as needed. Numerical experience indicates that the algorithmic choices for the control of inexactness and line-search can help avoid subproblems with matrices that are only marginally stable. The performance of the algorithm is illustrated on a large-scale Riccati equation associated with the stabilization of Navier-Stokes flow around a cylinder.Comment: 21 pages, 2 figures, 4 table

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    A Greedy Data Collection Scheme For Linear Dynamical Systems

    Get PDF
    corecore