144 research outputs found

    Biolixiviation des métaux lourds et stabilisation des boues municipales: effet de la forme du souffre élémentaire utilisé comme substrat

    Get PDF
    La présence de concentrations élevées en métaux lourds retrouvés dans les boues de stations d'épuration est un facteur important limitant ainsi leurs différents modes de dispositions (rejet en mer, enfouissement, incinération, ou même recyclage comme fertilisant agricole ou forestier) par crainte de dégâts considérables qui pourraient être causés à l'environnement. L'objectif de ce travail consistait à mettre au point un procédé qui permettrait conjointement la stabilisation des boues municipales et l'enlèvement des métaux lourds qui y sont associés. L'approche poursuivie dans cette étude était de vérifier si ce procédé microbien, conçu pour enlever les métaux lourds associés aux boues municipales, pourrait éventuellement remplacer les procédés conventionnels de stabilisation des boues municipales, ce qui réduirait considérablement les temps et coûts de traitement. Ce procédé microbien consiste à utiliser des souches de thiobacilles qui oxydent le soufre élémentaire, produisant ainsi de l'acide sulfurique, et par la même occasion une forte baisse de pH (1.5). Les résultats obtenus en cultures discontinues, en bioréacteurs, avec des boues primaires provenant de la station d'épuration de la Communauté Urbaine de Québec (C.U.Q.- Est) montrent que cette chute de pH entraîne une solubilisation importante des métaux (Cr: 56 %, Cu: 97 %, Fe: 30 à 40 %, Pb: 69 %, Zn: 98 % ), du phosphore (52 %), ainsi qu'une réduction appréciable des matières volatiles en suspension (40 à 50 % ), et ce, après seulement 7 jours de traitement. Le soufre nécessaire à la biolixiviation- stabilisation est introduit, dans le cas de notre étude, sous forme de granules ou de blocs. Ce choix de la forme de soufre influe beaucoup sur la qualité de la boue produite, ainsi que sur son pouvoir acidophile après neutralisation. Le soufre en blocs s'avère plus efficace et aussi préférable au soufre en granules quant au pouvoir acidophile, après neutralisation, de la boue produite.Given the potential geochemical mobility and recognizd toxicity of heavy metals, their presence at high concentrations in sewage sludges imposes serious limitations on various sludge disposal practices (ocean disposal, landfill, incineration, or use as a fertilizer in agriculture or forestry), The objectve of this work was to develop a process that would permit the simultaneous stabilization of sewage sludges and the removal of heavy metals associated with them. The approach followed was to verify if this microbial leaching procedure could eventually replace conventional sludge stabilization processes and hence considerably reduce the time and cost of treatment. The microbial process consists of using thiobacillus strains which, in the presence of air, oxidize elemental sulfur to sulfuric acid, thus reducing the pH to very acidic levels (pH 1.5). This biological oxidation of elemental sulfur is brought about by two groups of sulfur-oxidizing bacteria, the less-acidophilic and the acidophilic thiobacilli. The initial acid production and pH reduction is due to the less-acidophilic bactena (Thiobacillus thioparus) which lower the pH to about 4.0. This is followed by the growth of acidophilic bacteria (Thiobacillus thiooxidans) and fruther pH reduction.Batch culture experiments were carried out in 30 L and 8 L reactors with primary sludges obtained from the Quebec urban community's wastewater treatment centre. Elemental sulfur and inoculum were added at the beginning of each experiment The inoculum was prepared by adding 1 % tyndalized sulfur powder to fresh secondary sludge and incubating for 8 days (final pH 1.5 to 2.0). A small portion (5 %) of this acidified sludge was then used as an inoculum for another batch of fresh sludge and this process was repeated several times until an acclimatized inoculum was obtained which could oxidize elemental sulfur rapidly, without an appreciable lag phase. The elemental sulfur necessary as substrate for the simultaneous bioleaching and sludge stabilization was introduced in the form of granules (2.4 to 4 mm diameter) or blocks (25 mm diameter).Sludge pH and ORP were measured at 24 hour intervals and all other measurements were carried out at 48 hour intervals. The results demonstrate that the addition of elemental sulfur and inoculum resulted in a considerable lowering of the sludge pH during the incubation period. Such pH lowering was not observed in cultures to which sulfur and inoculum were not added. This lowering of pH (2.1) was related to the quantity of substrate (sulfur) and inoculum present in the medium. An increase in the medium ORP (from -50 to about 500 mV) was also observed. Acidification of the medium along with the elevated ORP levels resulted in the solubilization of metals initially present in the sludge. This pH reduction, after only 7 days of treatment, effected an important metal solubilization (Cr: 56 %, Cu: 97 %, Be: 30-40 %, Pb: 69 %, Zn: 98 %), as well as an appreciable reduction in phosphorus (52 %) and in the volatile suspended solids concentration (40-50 %). In addition, the sludge which initially had a highly repulsive odour was rendered odourless.In a previous study we had showm that for an optimum rate of acidification of the sludge a minimum concentration of elemental sulfur (2 g/L) was necessary, even though only 40 % of this sulfur was oxidized. In the present experiment the physical form of the sulfur was shown to influence both the quality of sludge produced and its acid-generating capacity after neutralization. Sulfur in the form of blocks was more efficient than granules in that the elemental sulfur could be readily separated from the sludge at the end of the treatment, yielding a sludge after neutralization that had a low acid-generating capacity. In the case of granules, the unused sulfur was broken down into a fine powder during the course of the bioleaching experiment and could not be separated from the leached sludge - even after neutralization, the leached sludge exhibited a high acid-generating capacity, which would limit its use as a fertilizer on agricultural land

    Poorly differentiated thyroid carcinoma: a retrospective clinicopathological study

    Get PDF
    Poorly differentiated thyroid carcinoma (PDTC) is an independent thyroid cancer histotype. In spite of its scarcity, it represents the main cause of death from non-anaplastic follicular cell-derived thyroid cancer. However, given the newness of this entity, few data are available on its clinical behaviour and no explicit consensus sets its treatment. To report the experience of a tertiary medical centre in morocco with PDTC over a period of 7 years. Retrospective study selecting all patients treated for thyroid carcinoma in Nuclear Medicine Department of a tertiary medical centre in Casablanca over seven years period. Patient's files were reviewed for background data, clinico-pathological characteristics, treatment and outcome. Seven patients were included in the study. Patient's average age was 60 years old (30-81) including six women and one man. All patients underwent a total thyroidectomy completed by cervical lymph node dissection in 57% of cases. Mean primary tumour size was 4cm (1-9cm). Patients were classified pT3 in 70% of cases, pT1 and pT2 in 15% each. Vascular invasion was found in 85% of cases. Pathological subtypes found were "insular carcinoma" in 85% of cases. Radioiodine therapy (RIT) was indicated in all cases. Follow-up period ranged between 10 months and 6 years. It showed a complete remission in 57% of cases, persistent disease in 28% of cases and a progressive disease in 15% of cases with a local recurrence. To date, the survival rate is 85%. PDTC is an aggressive thyroid cancer histotype. Treatment remains surgical followed by RIT if the tumour is radioavid. Multimodality therapy is indicated depending on the case and close monitoring is always indicated given the high risk of relapse

    Reviewing the use of the theory of inventive problem solving (TRIZ) in green supply chain problems

    Get PDF
    The purpose of the paper is to review the practice of the theory of inventive problem solving (TRIZ) in Green Supply Chain (GSC) problems and to identify new research challenges focusing on the question: “To what extent is it necessary to evolve TRIZ tools, methods and theoretical grounding for addressing GSC inventive problems?” First, a review of the past contributions of TRIZ based methods to GSC problem resolution is presented. As the result of the papers review did not provide a comprehensive understanding of the limitations and areas of potential application of TRIZ in GSC, three experiments were conducted to complete the literature review, in order to provide a more comprehensive answer to the posed question and identify research challenges. The experiments addressing GSC problems were also conducted to explore to what extent the more mature meta-methods of classical TRIZ, namely ARIZ 85 A, C and the related sub-methods, can be used as in GSM problems. The examples were chosen to explore types of GSC problems that were not yet addressed with TRIZ. The experiment results highlight limitations on the use of the TRIZ in GSC inventive problems, which were not mentioned in the GSC literature. Moreover it highlights the limitation of using the more mature meta-methods of TRIZ (ARIZ 85A and ARIZ 85C) when the conflict to overcome contains more than two evaluation parameters and one action parameter. Finally, research challenges to overcome the limitations and to improve the use of TRIZ in GSC inventive problems are stated. Among them, methods for quickly establishing the existence of classical TRIZ contradictions or for informing the problem solver when no TRIZ contradictions are present in a given inventive problem in GSC should be proposed. Such methods would permit determining whether ARIZ 85C could be used and avoid a long and fruitless search for a system of contradictions. Find alternatives to the algorithms proposed in the past to be able to establish the generalized contradictions of inventive problems. Make evolve meta-methods ARIZ 85C or substitute it with methods which can address the inventive problems that cannot be treated by ARIZ 85C

    Eclipses observed by LYRA - a sensitive tool to test the models for the solar irradiance

    Full text link
    We analyze the light curves of the recent solar eclipses measured by the Herzberg channel (200-220 nm) of the Large Yield RAdiometer (LYRA) onboard PROBA-2. The measurements allow us to accurately retrieve the center- to-limb variations (CLV) of the solar brightness. The formation height of the radiation depends on the observing angle so the examination of the CLV provide information about a broad range of heights in the solar atmosphere. We employ the 1D NLTE radiative transfer COde for Solar Irradiance (COSI) to model the measured light curves and corresponding CLV dependencies. The modeling is used to test and constrain the existing 1D models of the solar atmosphere, e.g. the temperature structure of the photosphere and the treatment of the pseudo- continuum opacities in the Herzberg continuum range. We show that COSI can accurately reproduce not only the irradiance from the entire solar disk, but also the measured CLV. It hence can be used as a reliable tool for modeling the variability of the spectral solar irradiance.Comment: 19 pages, 9 figures, Solar Physic

    NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel

    Get PDF
    NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism

    Milk exosomes: beyond dietary microRNAs

    Get PDF
    Extracellular vesicles deliver a variety of cargos to recipient cells, including the delivery of cargos in dietary vesicles from bovine milk to non-bovine species. The rate of discovery in this important line of research is slowed by a controversy whether the delivery and bioactivity of a single class of vesicle cargos, microRNAs, are real or not. This opinion paper argues that the evidence in support of the bioavailability of microRNAs encapsulated in dietary exosomes outweighs the evidence produced by scholars doubting that phenomenon is real. Importantly, this paper posits that the time is ripe to look beyond microRNA cargos and pursue innovative pathways through which dietary exosomes alter metabolism. Here, we highlight potentially fruitful lines of exploration

    Chemical vapour deposition synthetic diamond: materials, technology and applications

    Full text link
    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form, however non-planar geometries are also possible and enable a number of key applications. This article reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, based on the ability to synthesize a consistent and engineered high performance product.Comment: 51 pages, 16 figure

    Expected Performances of the NOMAD/ExoMars instrument

    Get PDF
    NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in [Vandaele et al., Optics Express, 2015] and [Thomas et al., Optics Express, 2015], the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged [Drummond et al., Planetary Space and Science, 2011]. Results have been obtained for all three channels in nadir and in solar occultation
    corecore