19 research outputs found

    Genetic Diversity of Local Canines Assessed by Derived Cleaved Amplified Polymorphic Sequences

    Full text link
    Breeding of the dog, Canis Iupus familiaris, over centuries has given rise to the selection of certain traits including size, shape, coat length, color and many behavioral traits. Inbreeding within dog breeds has resulted in the increase of genetic diseases, many of which are similar to human diseases making the dog an exemplary model organism to study. Using dCAPS (Derived Cleaved Amplified Polymorphic Sequences) we can identify SNPs (Single Nucleotide Polymorphisms) in the dog genome using buccal samples collected from four local dogs of different breeds, both large and small. After performing DNA extractions, PCR (Polymerase Chain Reaction), restriction enzyme digestions and gel electrophoresis on each sample, these genetic markers can be analyzed and differentiated

    Theory of Time-Dependent Freezing. Part I: Description of Scheme for Wet Growth of Hail

    No full text
    At subzero temperatures, cloud particles can contain both ice and liquid water fractions. Wet growth of precipitation particles occurs when supercooled cloud liquid is accreted faster than it can freeze on impact. With a flexible framework, the theory of wet growth of hail is extended to the case of the inhomogeneities of surface temperature and of liquid coverage over the surface of the particle. The theory treats the heat fluxes between its wet and dry parts and radial heat fluxes from the sponge layer through the liquid skin to the air. The theory parameterizes effects of nonsphericity of hail particles on their growth by accretion. Gradual internal freezing of any liquid soaking the hail or graupel particle's interior during dry growth ("riming") is treated as well. In this way, the microphysical recycling envisaged by Pflaum in a paper in 1980 is treated, with alternating episodes of wet and dry growth. The present paper, the first of a two-part paper, describes the scheme to treat wet growth, accounting for dependencies on condensate content, temperature, and particle size. Comparison with the laboratory experiments is presented

    Using Machine Learning to Predict Wind Flow in Urban Areas

    No full text
    Solving the hydrodynamical equations in urban canopies often requires substantial computational resources. This is especially the case when tackling urban wind comfort issues. In this article, a novel and efficient technique for predicting wind velocity is discussed. Reynolds-averaged Navier鈥揝tokes (RANS) simulations of the Michaelstadt wind tunnel experiment and the Tel Aviv center are used to supervise a machine learning function. Using the machine learning function it is possible to observe wind flow patterns in the form of eddies and spirals emerging from street canyons. The flow patterns observed in urban canopies tend to be predominantly localized, as the machine learning algorithms utilized for flow prediction are based on local morphological features

    Theory of Time-Dependent Freezing. Part II: Scheme for Freezing Raindrops and Simulations by a Cloud Model with Spectral Bin Microphysics

    No full text
    The time-dependent process of raindrop freezing is described in a general form, including thermodynamic effects from the accretion of cloud liquid and cloud ice. Freezing drops (FDs) larger than 80 m (and their water mass) are represented explicitly in a cloud model with spectral bin microphysics. FDs consist of interior water covered by ice initially. Possibilities of both dry (icy surface) and wet growth (surface covered by liquid) of FDs are accounted for.Schemes of time-dependent freezing for rain (discussed in this paper) and wet growth of hail and graupel (discussed in Part I) were implemented in a spectral bin microphysics cloud model. The model predicted that accretion of liquid produces giant FDs of 0.5-2 cm in diameter, far larger than purely liquid drops can become. This growth of FDs is promoted by recirculation from the downdraft back into the updraft and by cessation of internal freezing from some accreted liquid remaining unfrozen (wet growth of FDs). Significant contents of FDs reach a height level of 7 km (-29 degrees C) in the simulated storm. After FDs finish freezing and become hailstones, wet growth may resume. The critical diameter separating wet- and dry-growth regimes is predicted to increase with height for FDs and is more vertically uniform for hail.A sensitivity test shows that time-dependent freezing initially delays the formation of hail but later in the mature stage of the storm boosts it. Convection is invigorated. Hail and freezing drops are upwelled to higher levels, causing hail to grow to sizes up to 100% larger than without time-dependent freezing

    Auditory perceptual grouping and attention in dyslexia.

    No full text
    Despite dyslexia affecting a large number of people, the mechanisms underlying the disorder remain undetermined. There are numerous theories about the origins of dyslexia. Many of these relate dyslexia to low-level, sensory temporal processing deficits. Another group of theories attributes dyslexia to language-specific impairments. Here we show that dyslexics perform worse than controls on an auditory perceptual grouping task. The results show differences in performance between the groups that depend on sound frequency and not solely on parameters related to temporal processing. Performance on this task suggests that dyslexics聮 deficits may result from impaired attentional control mechanisms. Such deficits are neither modality nor language specific and may help to reconcile differences between theories of dyslexia

    Effect of Aerosols on Freezing Drops, Hail, and Precipitation in a Midlatitude Storm

    No full text
    A midlatitude hail storm was simulated using a new version of the spectral bin microphysics Hebrew University Cloud Model (HUCM) with a detailed description of time-dependent melting and freezing. In addition to size distributions of drops, plate-, columnar-, and branch-type ice crystals, snow, graupel, and hail, new distributions for freezing drops as well as for liquid water mass within precipitating ice particles were implemented to describe time-dependent freezing and wet growth of hail, graupel, and freezing drops.Simulations carried out using different aerosol loadings show that an increase in aerosol loading leads to a decrease in the total mass of hail but also to a substantial increase in the maximum size of hailstones. Cumulative rain strongly increases with an increase in aerosol concentration from 100 to about 1000 cm(-3). At higher cloud condensation nuclei (CCN) concentrations, the sensitivity of hailstones' size and surface precipitation to aerosols decreases. The physical mechanism of these effects was analyzed. It was shown that the change in aerosol concentration leads to a change in the major mechanisms of hail formation and growth. The main effect of the increase in the aerosol concentration is the increase in the supercooled cloud water content. Accordingly, at high aerosol concentration, the hail grows largely by accretion of cloud droplets in the course of recycling in the cloud updraft zone. The main mechanism of hail formation in the case of low aerosol concentration is freezing of raindrops

    The Anatomy and Physics of Z(DR) Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model

    No full text
    Polarimetric radar observations of deep convective storms frequently reveal columnar enhancements of differential reflectivity Z(DR). Such "Z(DR) columns" can extend upward more than 3 km above the environmental 0 C level, indicative of supercooled liquid drops being lofted by the updraft. Previous observational and modeling studies of Z(DR) columns are reviewed. To address remaining questions, the Hebrew University Cloud Model, an advanced spectral bin microphysical model, is coupled with a polarimetric radar operator to simulate the formation and life cycle of Z(DR) columns in a deep convective continental storm. In doing so, the mechanisms by which Z(DR) columns are produced are clarified, including the formation of large raindrops in the updraft by recirculation of smaller raindrops formed aloft back into the updraft at low levels. The internal hydrometeor structure of Z(DR) columns is quantified, revealing the transition from supercooled liquid drops to freezing drops to hail with height in the Z(DR) column. The life cycle of Z(DR) columns from early formation, through growth to maturity, to demise is described, showing how hail falling out through the weakening or ascending updraft bubble dominates the reflectivity factor Z(H), causing the death of the Z(DR) column and leaving behind its "ghost" of supercooled drops. In addition, the practical applications of Z(DR) columns and their evolution are explored.. The height of the Z(DR) column is correlated with updraft strength, and the evolution of Z(DR) column height is correlated with increases in Z(H) and hail mass content at the ground after a lag of 10-15 min
    corecore