3 research outputs found

    A Fast 0.5 T Prepolarizer Module for Preclinical Magnetic Resonance Imaging

    Get PDF
    We present a magnet and high power electronics for Prepolarized Magnetic Resonance Imaging (PMRI) in a home-made, special-purpose preclinical system designed for simultaneous visualization of hard and soft biological tissues. The sensitivity of MRI systems grows with field strength, but so do their costs. PMRI can boost the signal-to-noise ratio (SNR) in affordable low-field scanners by means of a long and strong magnetic pulse. However, this must be rapidly switched off prior to the imaging pulse sequence, in timescales shorter than the spin relaxation (or T1) time of the sample. We have operated our prepolarizer at up to 0.5 T and demonstrated enhanced magnetization, image SNR and tissue contrast with PMRI of tap water, an ex vivo mouse brain and food samples. These have T1 times ranging from hundreds of milli-seconds to single seconds, while the preliminary high-power electronics setup employed in this work can switch off the prepolarization field in tens of milli-seconds. In order to make this system suitable for solid-state matter and hard tissues, which feature T1 times as short as 10 ms, we are developing new electronics which can cut switching times to ~ 300 μs. This does not require changes in the prepolarizer module, opening the door to the first experimental demonstration of PMRI on hard biological tissues

    Time reconstruction study using tubes of response backprojectors in List Mode algorithms, applied to amonolithic crystals based breast PET

    Full text link
    [Otros] The LM-EM algorithm has the advantage to calculate the emission probabilities needed for the reconstruction process on the fly, without the need of a pre-calculated system matrix. The reconstruction time for this algorithm strongly depends on the used backprojector and the available statistics. This algorithm when implemented in systems using monolithic crystals to detect gamma radiation allows one to extensively exploit the virtual pixilation feature, not available for systems based on pixilated crystals. In this work we present a backprojector for LM-EM, the TOR method, which achieves a tradeoff between computational efficiency and image quality. Its temporal subset algorithm optimization (LM-OS) has also been implemented in order to achieve real-time reconstructions. To evaluate the performances of LM-OS algorithm with the TOR method backprojector and only with one iteration on the datasets, studies based on the system spatial resolution, uniformity, and contrast coefficients were carried out and they were compared with those obtained with LM-EM and MLEM algorithms using twelve iteration. Finally, a study on reconstruction time using LM-OS has been performed with breast patients dataProject funded by the Spanish Ministry of Economy and Competitiveness and co-funded with FEDER's funds within the INNPACTO 2011 program. This work was supported by the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+i) under Grant No. FIS2010-21216-CO2-01 and the Valencian Local Government under Grants PROMETEOII/2013/010 and ISIC 2011/013Moliner, L.; Correcher, C.; González Martínez, AJ.; Conde, P.; Crespo, E.; Hernandez, L.; Rigla, JP.... (2013). Time reconstruction study using tubes of response backprojectors in List Mode algorithms, applied to amonolithic crystals based breast PET. IEEE. 14-18. https://doi.org/10.1109/NSSMIC.2013.6829372S141

    Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants.

    No full text
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups
    corecore