21 research outputs found
The association between body fatness and mortality among breast cancer survivors: results from a prospective cohort study
Evidence linking body fatness to breast cancer (BC) prognosis is limited. While it seems that excess adiposity is associated with poorer BC survival, there is uncertainty over whether weight changes reduce mortality. This study aimed to assess the association between body fatness and weight changes pre- and postdiagnosis and overall mortality and BC-specific mortality among BC survivors. Our study included 13,624 BC survivors from the European Prospective Investigation into Cancer and Nutrition (EPIC) study, with a mean follow-up of 8.6 years after diagnosis. Anthropometric data were obtained at recruitment for all cases and at a second assessment during follow-up for a subsample. We measured general obesity using the body mass index (BMI), whereas waist circumference and A Body Shape Index were used as measures of abdominal obesity. The annual weight change was calculated for cases with two weight assessments. The association with overall mortality and BC-specific mortality were based on a multivariable Cox and Fine and Gray models, respectively. We performed Mendelian randomization (MR) analysis to investigate the potential causal association. Five-unit higher BMI prediagnosis was associated with a 10% (95% confidence interval: 5–15%) increase in overall mortality and 7% (0–15%) increase in dying from BC. Women with abdominal obesity demonstrated a 23% (11–37%) increase in overall mortality, independent of the association of BMI. Results related to weight change postdiagnosis suggested a U-shaped relationship with BC-specific mortality, with higher risk associated with losing weight or gaining > 2% of the weight annually. MR analyses were consistent with the identified associations. Our results support the detrimental association of excess body fatness on the survival of women with BC. Substantial weight changes postdiagnosis may be associated with poorer survival
Body shape phenotypes of multiple anthropometric traits and cancer risk: a multi-national cohort study
Background - Classical anthropometric traits may fail to fully represent the relationship of weight, adiposity, and height with cancer risk. We investigated the associations of body shape phenotypes with the risk of overall and site-specific cancers.
Methods - We derived four distinct body shape phenotypes from principal component (PC) analysis on height, weight, body mass index (BMI), waist (WC) and hip circumferences (HC), and waist-to-hip ratio (WHR). The study included 340,152 men and women from 9 European countries, aged mostly 35–65 years at recruitment (1990–2000) in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Cox proportional hazards regression was used to estimate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs).
Results - After a median follow-up of 15.3 years, 47,110 incident cancer cases were recorded. PC1 (overall adiposity) was positively associated with the risk of overall cancer, with a HR per 1 standard deviation (SD) increment equal to 1.07 (95% confidence interval 1.05 to 1.08). Positive associations were observed with 10 cancer types, with HRs (per 1 SD) ranging from 1.36 (1.30–1.42) for endometrial cancer to 1.08 (1.03–1.13) for rectal cancer. PC2 (tall stature with low WHR) was positively associated with the risk of overall cancer (1.03; 1.02–1.04) and five cancer types which were not associated with PC1. PC3 (tall stature with high WHR) was positively associated with the risk of overall cancer (1.04; 1.03–1.05) and 12 cancer types. PC4 (high BMI and weight with low WC and HC) was not associated with overall risk of cancer (1.00; 0.99–1.01).
Conclusions - In this multi-national study, distinct body shape phenotypes were positively associated with the incidence of 17 different cancers and overall cancer
On the use of the healthy lifestyle index to investigate specific disease outcomes
The healthy lifestyle index (HLI), defined as the unweighted sum of individual lifestyle components, was used to investigate the combined role of lifestyle factors on health-related outcomes. We introduced weighted outcome-specific versions of the HLI, where individual lifestyle components were weighted according to their associations with disease outcomes. Within the European Prospective Investigation into Cancer and Nutrition (EPIC), we examined the association between the standard and the outcome-specific HLIs and the risk of T2D, CVD, cancer, and all-cause premature mortality. Estimates of the hazard ratios (HRs), the Harrell's C-index and the population attributable fractions (PAFs) were compared. For T2D, the HR for 1-SD increase of the standard and T2D-specific HLI were 0.66 (95% CI: 0.64, 0.67) and 0.43 (0.42, 0.44), respectively, and the C-index were 0.63 (0.62, 0.64) and 0.72 (0.72, 0.73). Similar, yet less pronounced differences in HR and C-index were observed for standard and outcome-specific estimates for cancer, CVD and all-cause mortality. PAF estimates for mortality before age 80 were 57% (55%, 58%) and 33% (32%, 34%) for standard and mortality-specific HLI, respectively. The use of outcome-specific HLI could improve the assessment of the role of lifestyle factors on disease outcomes, thus enhancing the definition of public health recommendations
Degree of food processing and breast cancer risk: a prospective study in 9 European countries
Recent epidemiological studies have suggested a positive association between ultra-processed food consumption and breast cancer risk, although some studies also reported no association. Furthermore, the evidence regarding the associations between intake of food with lower degrees of processing and breast cancer risk is limited.Thus, we investigated the associations between dietary intake by degree of food processing and breast cancer risk, overall and by breast cancer subtypes in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.Dietary intake of EPIC participants was assessed via questionnaires at baseline. More than 11,000 food ingredients were classified into four groups of food processing levels using the NOVA classification system: unprocessed/minimally processed (NOVA 1), culinary ingredients (NOVA 2), processed (NOVA 3) and ultra-processed (NOVA 4). Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of breast cancer per standard deviation increase in daily consumption (grams) of foods from each NOVA group.The current analysis included 14,933 breast cancer cases, diagnosed among the 318,686 EPIC female participants, (median follow-up of 14.9 years). No associations were found between breast cancer risk and the level of dietary intake from NOVA 1 [HR per 1 SD=0.99 (95% CI 0.97 - 1.01)], NOVA 2 [HR per 1 SD =1.01 (95% CI 0.98 - 1.03)] and NOVA 4 [HR per 1 SD =1.01 (95% CI 0.99 - 1.03)] foods. However, a positive association was found between NOVA 3 and breast cancer risk [HR per 1 SD =1.05 (95% CI 1.03 - 1.07)] which became non-significant after adjustment for alcohol intake [HR per 1 SD =1.01 (95% CI 0.98 - 1.05)] or when beer and wine were excluded from this group [HR per 1 SD =0.99 (95% CI 0.97 - 1.01)]. The associations did not differ by breast cancer subtype, menopausal status or body mass index. Findings from this large-scale prospective study suggest that the positive association between processed food intake and breast cancer risk was likely driven by alcoholic beverage consumption
Combined impact of healthy lifestyle factors on colorectal cancer: a large European cohort study
Background: Excess body weight, physical activity, smoking, alcohol consumption and certain dietary factors are individually related to colorectal cancer (CRC) risk; however, little is known about their joint effects. The aim of this study was to develop a healthy lifestyle index (HLI) composed of five potentially modifiable lifestyle factors – healthy weight, physical activity, non-smoking, limited alcohol consumption and a healthy diet, and to explore the association of this index with CRC incidence using data collected within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods: In the EPIC cohort, a total of 347,237 men and women, 25- to 70-years old, provided dietary and lifestyle information at study baseline (1992 to 2000). Over a median follow-up time of 12 years, 3,759 incident CRC cases were identified. The association between a HLI and CRC risk was evaluated using Cox proportional hazards regression models and population attributable risks (PARs) have been calculated. Results: After accounting for study centre, age, sex and education, compared with 0 or 1 healthy lifestyle factors, the hazard ratio (HR) for CRC was 0.87 (95% confidence interval (CI): 0.44 to 0.77) for two factors, 0.79 (95% CI: 0.70 to 0.89) for three factors, 0.66 (95% CI: 0.58 to 0.75) for four factors and 0.63 (95% CI: 0.54 to 0.74) for five factors; P-trend <0.0001. The associations were present for both colon and rectal cancers, HRs, 0.61 (95% CI: 0.50 to 0.74; P for trend <0.0001) for colon cancer and 0.68 (95% CI: 0.53 to 0.88; P-trend <0.0001) for rectal cancer, respectively (P-difference by cancer sub-site = 0.10). Overall, 16% of the new CRC cases (22% in men and 11% in women) were attributable to not adhering to a combination of all five healthy lifestyle behaviours included in the index. Conclusions: Combined lifestyle factors are associated with a lower incidence of CRC in European populations characterized by western lifestyles. Prevention strategies considering complex targeting of multiple lifestyle factors may provide practical means for improved CRC prevention. Electronic supplementary material The online version of this article (doi:10.1186/s12916-014-0168-4) contains supplementary material, which is available to authorized users
The association between body fatness and mortality among breast cancer survivors: results from a prospective cohort study
Evidence linking body fatness to breast cancer (BC) prognosis is limited. While it seems that excess adiposity is associated with poorer BC survival, there is uncertainty over whether weight changes reduce mortality. This study aimed to assess the association between body fatness and weight changes pre- and postdiagnosis and overall mortality and BC-specific mortality among BC survivors. Our study included 13,624 BC survivors from the European Prospective Investigation into Cancer and Nutrition (EPIC) study, with a mean follow-up of 8.6 years after diagnosis. Anthropometric data were obtained at recruitment for all cases and at a second assessment during follow-up for a subsample. We measured general obesity using the body mass index (BMI), whereas waist circumference and A Body Shape Index were used as measures of abdominal obesity. The annual weight change was calculated for cases with two weight assessments. The association with overall mortality and BC-specific mortality were based on a multivariable Cox and Fine and Gray models, respectively. We performed Mendelian randomization (MR) analysis to investigate the potential causal association. Five-unit higher BMI prediagnosis was associated with a 10% (95% confidence interval: 5-15%) increase in overall mortality and 7% (0-15%) increase in dying from BC. Women with abdominal obesity demonstrated a 23% (11-37%) increase in overall mortality, independent of the association of BMI. Results related to weight change postdiagnosis suggested a U-shaped relationship with BC-specific mortality, with higher risk associated with losing weight or gaining > 2% of the weight annually. MR analyses were consistent with the identified associations. Our results support the detrimental association of excess body fatness on the survival of women with BC. Substantial weight changes postdiagnosis may be associated with poorer survival
On the use of the healthy lifestyle index to investigate specific disease outcomes
The healthy lifestyle index (HLI), defined as the unweighted sum of individual lifestyle components, was used to investigate the combined role of lifestyle factors on health-related outcomes. We introduced weighted outcome-specific versions of the HLI, where individual lifestyle components were weighted according to their associations with disease outcomes. Within the European Prospective Investigation into Cancer and Nutrition (EPIC), we examined the association between the standard and the outcome-specific HLIs and the risk of T2D, CVD, cancer, and all-cause premature mortality. Estimates of the hazard ratios (HRs), the Harrell’s C-index and the population attributable fractions (PAFs) were compared. For T2D, the HR for 1-SD increase of the standard and T2D-specific HLI were 0.66 (95% CI: 0.64, 0.67) and 0.43 (0.42, 0.44), respectively, and the C-index were 0.63 (0.62, 0.64) and 0.72 (0.72, 0.73). Similar, yet less pronounced differences in HR and C-index were observed for standard and outcome-specific estimates for cancer, CVD and all-cause mortality. PAF estimates for mortality before age 80 were 57% (55%, 58%) and 33% (32%, 34%) for standard and mortality-specific HLI, respectively. The use of outcome-specific HLI could improve the assessment of the role of lifestyle factors on disease outcomes, thus enhancing the definition of public health recommendations
Cross-sectional associations of objectively measured physical activity, cardiorespiratory fitness and anthropometry in european adults
Objective: To quantify the independent associations between objectively measured physical activity (PA),
cardiorespiratory fitness (CRF), and anthropometry in European men and women.
Methods: 2,056 volunteers from 12 centers across Europe were fitted with a heart rate and movement
sensor at 2 visits 4 months apart for a total of 8 days. CRF (ml/kg/min) was estimated from an 8 minute
ramped step test. A cross-sectional analysis of the independent associations between objectively measured PA (m/s2
/d), moderate and vigorous physical activity (MVPA) (%time/d), sedentary time (%time/d),
CRF, and anthropometry using sex stratified multiple linear regression was performed.
Results: In mutually adjusted models, CRF, PA, and MVPA were inversely associated with all anthropometric markers in women. In men, CRF, PA, and MVPA were inversely associated with BMI, whereas only
CRF was significantly associated with the other anthropometric markers. Sedentary time was positively
associated with all anthropometric markers, however, after adjustment for CRF significant in women only.
Conclusion: CRF, PA, MVPA, and sedentary time are differently associated with anthropometric markers
in men and women. CRF appears to attenuate associations between PA, MVPA, and sedentary time.
These observations may have implications for prevention of obesity
Physical activity and the risk of postmenopausal breast cancer - The Norwegian Women and Cancer Study
BACKGROUND: The relationship between physical activity (PA) throughout life and the risk of postmenopausal breast cancer overall and by estrogen receptor (ER) and progesterone receptor (PR) status, has been reported, but without consistent results. The present study aimed to investigate PA from young age to adulthood in participants of the Norwegian Women and Cancer (NOWAC) Study, in order to determine whether changes in PA level affect the risk of postmenopausal breast cancer. METHODS: 1767 invasive breast cancer cases were identified among 80,202 postmenopausal participants of the NOWAC Study during 8.2 years of median follow-up. PA levels at age 14 years, 30 years and at cohort enrollment were obtained via a self-administered questionnaire. Multivariate Cox proportional hazard regression models were used to estimate relative risks and 95% confidence intervals of the risk of postmenopausal breast cancer overall and by ER/PR status. RESULTS: Risk of postmenopausal breast cancer overall and by ER/PR status was not associated with physical activity level at enrollment. Women with a low PA level at age 30 had an increased risk of ER+/PR + breast tumors (P for trend = 0.04) compared to women with a moderate physical activity level at age 30. Women with a low physical activity level at all three periods of life had a 20% significantly reduced risk of postmenopausal breast cancer, as well as a reduced risk of ER+/PR + and ER+/PR- breast tumors, compared with women who maintained a moderate physical activity level. However, when analyses were corrected for multiple tests, the result was no longer statistically significant. The findings were consistent over strata of age, body mass index and use of hormone replacement therapy. CONCLUSIONS: The study results from this large Norwegian cohort do not support an association between physical activity at different periods of life and the risk of postmenopausal breast cancer
Mediating role of lifestyle behaviours in the association between education and cancer: results from the European Prospective Investigation into Cancer and Nutrition.
BACKGROUND: Many studies have shown that socioeconomic position (SEP) is associated with the incidence of malignant tumors at different sites. This study aims to estimate the association between educational level (as proxy for SEP) and cancer incidence and to understand if the observed associations might be partially explained by lifestyle behaviors. METHODS: The analyses were performed on data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study, globally and by sex. We used Cox proportional hazards models together with mediation analysis to disentangle the total effect (TE) of educational level (measured through the Relative Index of Inequality (RII)) on cancer incidence into pure direct (PDE) and total indirect (TIE) effect, unexplained and explained by mediators, respectively. PDE and TIE were then combined to compute the proportions mediated (PM). RESULTS: After an average of 14 years of follow-up, 52,422 malignant tumors were ascertained. Low educated participants showed higher risk of developing stomach, lung, kidney (in women), and bladder (in men) cancers, and, conversely, lower risk of melanoma and breast cancer (in post-menopausal women), when compared to more educated participants. Mediation analyses showed that portions of the total effect of RII on cancer could be explained by site-specific related lifestyle behaviors for stomach, lung, and breast (in women). CONCLUSIONS: Cancer incidence in Europe is determined at least in part by a socioeconomically stratified distribution of risk factors. IMPACT: These observational findings support policies to reduce cancer occurrence by altering mediators, such as lifestyle behaviors, particularly focusing on underprivileged strata of the population