28 research outputs found

    Human Evolution: Genomic Gifts from Archaic Hominins

    Get PDF
    SummaryThe dispersal of humans throughout the world was accompanied by adaptations to local environments. New research shows that a previously identified haplotype of the EPAS1 gene, which allows Tibetans to live at high altitude, was inherited from archaic hominin ancestors

    Characterization of RNA content in individual phase-separated coacervate microdroplets

    Get PDF
    Liquid-liquid phase separation or condensation is a form of macromolecular compartmentalization. Condensates formed by complex coacervation were hypothesized to have played a crucial part during the origin-of-life. In living cells, condensation organizes biomolecules into a wide range of membraneless compartments. Although RNA is a key component of condensation in cells and the central component of the RNA world hypothesis, little is known about what determines RNA accumulation in condensates and how single condensates differ in their RNA composition. Therefore, we developed an approach to read the RNA content from single condensates using high-throughput sequencing. We find that RNAs which are enriched for specific sequence motifs efficiently accumulate in condensates. These motifs show high sequence similarity to short interspersed elements (SINEs). We observed similar results for protein-derived condensates, demonstrating applicability across different in vitro reconstituted membraneless organelles. Thus, our results provide a new inroad to explore the RNA content of phase-separated droplets at single condensate resolution.Competing Interest StatementThe authors have declared no competing interest

    An expansive human regulatory lexicon encoded in transcription factor footprints.

    Get PDF
    Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis-regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency

    The accessible chromatin landscape of the human genome

    Get PDF
    DNaseI hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers, and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ~2.9 million DHSs that encompass virtually all known experimentally-validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation, and regulatory factor occupancy patterns. We connect ~580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is choreographed with dozens to hundreds of co-activated elements, and the trans-cellular DNaseI sensitivity pattern at a given region can predict cell type-specific functional behaviors. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation

    Patterns of Archaic Hominin DNA in Modern Human Genomes

    No full text
    Thesis (Ph.D.)--University of Washington, 2015In this dissertation I describe the development of a method for identifying introgressed archaic haplotypes. I then present the application of this method to several populations. In 15 African hunter-gatherer genomes, I identify signatures of introgression from an unknown archaic hominin with an apparent divergence time with modern humans that is similar to the divergence time of Neanderthals. In a sample of 379 European and 279 East Asian genomes, I identify on average 1/4 of each individual's introgressed Neanderthal sequence, composing a total of 600Mb of the Neanderthal genome. I use characteristics of this sequence to estimate demographic parameters, including ancestral effective population size (Ne), and the complexity of the introgression event. I also present signatures of both purifying selection against Neanderthal sequence in modern humans, and selection for other, beneficial Neanderthal alleles. In a separate analysis, I show that the inferred parameters of the introgression event are not influenced by differing efficiency of selection between Europeans and East Asians, and explore alternative models for the complexity of the introgression event. In a sample of 35 Melanesian individuals from Papua New Guinea, I identify both Neanderthal and Denisovan introgression, and use this map of archaic introgression to identify regions of the genome that are depleted of archaic sequence from two independent introgression events, implying the presence of non-random forces such as selection in the creation of such regions

    A hybrid micro-macroevolutionary approach to gene tree reconstruction.

    No full text
    Gene family evolution is determined by microevolutionary processes (e.g., point mutations) and macroevolutionary processes (e.g., gene duplication and loss), yet macroevolutionary considerations are rarely incorporated into gene phylogeny reconstruction methods. We present a dynamic program to find the most parsimonious gene family tree with respect to a macroevolutionary optimization criterion, the weighted sum of the number of gene duplications and losses. The existence of a polynomial delay algorithm for duplication/loss phylogeny reconstruction stands in contrast to most formulations of phylogeny reconstruction, which are NP-complete. We next extend this result to obtain a two-phase method for gene tree reconstruction that takes both micro- and macroevolution into account. In the first phase, a gene tree is constructed from sequence data, using any of the previously known algorithms for gene phylogeny construction. In the second phase, the tree is refined by rearranging regions of the tree that do not have strong support in the sequence data to minimize the duplication/lost cost. Components of the tree with strong support are left intact. This hybrid approach incorporates both micro- and macroevolutionary considerations, yet its computational requirements are modest in practice because the two-phase approach constrains the search space. Our hybrid algorithm can also be used to resolve nonbinary nodes in a multifurcating gene tree. We have implemented these algorithms in a software tool, NOTUNG 2.0, that can be used as a unified framework for gene tree reconstruction or as an exploratory analysis tool that can be applied post hoc to any rooted tree with bootstrap values. The NOTUNG 2.0 graphical user interface can be used to visualize alternate duplication/loss histories, root trees according to duplication and loss parsimony, manipulate and annotate gene trees, and estimate gene duplication times. It also offers a command line option that enables high-throughput analysis of a large number of trees.</p

    Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.

    No full text
    <p>MOTIVATION: Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes.</p> <p>RESULTS: We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions.</p> <p>AVAILABILITY: Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung.</p> <p>CONTACT: [email protected].</p
    corecore