24,573 research outputs found

    Measurement based entanglement under conditions of extreme photon loss

    Full text link
    The act of measuring optical emissions from two remote qubits can entangle them. By demanding that a photon from each qubit reaches the detectors, one can ensure than no photon was lost. But the failure rate then rises quadratically with loss probability. In [1] this resulted in 30 successes per billion attempts. We describe a means to exploit the low grade entanglement heralded by the detection of a lone photon: A subsequent perfect operation is quickly achieved by consuming this noisy resource. We require only two qubits per node, and can tolerate both path length variation and loss asymmetry. The impact of photon loss upon the failure rate is then linear; realistic high-loss devices can gain orders of magnitude in performance and thus support QIP.Comment: Contains an extension of the protocol that makes it robust against asymmetries in path length and photon los

    Modulational Instability and Complex Dynamics of Confined Matter-Wave Solitons

    Full text link
    We study the formation of bright solitons in a Bose-Einstein condensate of 7^7Li atoms induced by a sudden change in the sign of the scattering length from positive to negative, as reported in a recent experiment (Nature {\bf 417}, 150 (2002)). The numerical simulations are performed by using the 3D Gross-Pitaevskii equation (GPE) with a dissipative three-body term. We show that a number of bright solitons is produced and this can be interpreted in terms of the modulational instability of the time-dependent macroscopic wave function of the Bose condensate. In particular, we derive a simple formula for the number of solitons that is in good agreement with the numerical results of 3D GPE. By investigating the long time evolution of the soliton train solving the 1D GPE with three-body dissipation we find that adjacent solitons repel each other due to their phase difference. In addition, we find that during the motion of the soliton train in an axial harmonic potential the number of solitonic peaks changes in time and the density of individual peaks shows an intermittent behavior. Such a complex dynamics explains the ``missing solitons'' frequently found in the experiment.Comment: to be published in Phys. Rev. Let

    Relative target sizes for the inactivation of the transforming and reproductive abilities of polyoma virus.

    Full text link

    Quantum Secrecy in Thermal States

    Get PDF
    We propose to perform quantum key distribution using quantum correlations occurring within thermal states produced by low power sources such as LED's. These correlations are exploited through the Hanbury Brown and Twiss effect. We build an optical central broadcast protocol using a superluminescent diode which allows switching between laser and thermal regimes, enabling us to provide experimental key rates in both regimes. We provide a theoretical analysis and show that quantum secrecy is possible, even in high noise situations.Comment: This version includes revisions prompted by referees comments, and some other small editorial comment
    corecore