5,581 research outputs found

    Relationships Between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs

    Get PDF
    Ionic transport in conventional ionic solids is generally considered to proceed via independent diffusion events or "hops''. This assumption leads to well-known Arrhenius expressions for transport coefficients, and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion-hopping with corresponding Poisson distributions to test the assumption of independent hopping in these common structure-types. In all cases diffusion is a non-Poisson process, and hopping is strongly correlated in time. In B1 the diffusion coefficient can be approximated by an Arrhenius expression, though the physical significance of the parameters differs from that commonly assumed. In low temperature B3 and B4 diffusion is characterised by concerted motion of multiple ions in short closed loops. Diffusion coefficients can not be expressed in a simple Arrhenius form dependent on single-ion free-energies, and intrinsic diffusion must be considered a many-body process

    Molecular Dynamics Simulation of Coherent Interfaces in Fluorite Heterostructures

    Get PDF
    The standard model of enhanced ionic conductivities in solid electrolyte heterostructures follows from a continuum mean-field description of defect distributions that makes no reference to crystalline structure. To examine ionic transport and defect distributions while explicitly accounting for ion-ion correlations and lattice effects, we have performed molecular dynamics simulations of a model coherent fluorite heterostructure without any extrinsic defects, with a difference in standard chemical potentials of mobile fluoride ions between phases induced by an external potential. Increasing the offset in fluoride ion standard chemical potentials across the internal interfaces decreases the activation energies for ionic conductivity and diffusion and strongly enhances fluoride ion mobilities and defect concentrations near the heterostructure interfaces. Non-charge-neutral "space-charge" regions, however, extend only a few atomic spacings from the interface, suggesting a continuum model may be inappropriate. Defect distributions are qualitatively inconsistent with the predictions of the continuum mean-field model, and indicate strong lattice-mediated defect-defect interactions. We identify an atomic-scale "Frenkel polarisation" mechanism for the interfacial enhancement in ionic mobility, where preferentially oriented associated Frenkel pairs form at the interface and promote local ion mobility via concerted diffusion processes

    A New Proof Rule for Almost-Sure Termination

    Get PDF
    An important question for a probabilistic program is whether the probability mass of all its diverging runs is zero, that is that it terminates "almost surely". Proving that can be hard, and this paper presents a new method for doing so; it is expressed in a program logic, and so applies directly to source code. The programs may contain both probabilistic- and demonic choice, and the probabilistic choices may depend on the current state. As do other researchers, we use variant functions (a.k.a. "super-martingales") that are real-valued and probabilistically might decrease on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.Comment: V1 to appear in PoPL18. This version collects some existing text into new example subsection 5.5 and adds a new example 5.6 and makes further remarks about uncountable branching. The new example 5.6 relates to work on lexicographic termination methods, also to appear in PoPL18 [Agrawal et al, 2018

    Density Functional Theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes

    Get PDF
    To explore the potential of molecular gas treatment of freshly cut lithium foils in non-electrolyte based passivation of high energy-density Li anodes, density functional theory (DFT) has been used to study the decomposition of molecular gases on metallic lithium surfaces. By combining DFT geometry optimization and Molecular Dynamics, the effects of atmospheric (N2, O2, CO2) and hazardous (F2, SO2) gas decomposition on Li(bcc) (100), (110), and (111) surfaces on relative surface energies, work functions, and emerging electronic and elastic properties are investigated. The simulations suggest that exposure to different molecular gases can be used to induce and control reconstructions of the metal Li surface and substantial changes (up to over 1 eV) in the work function of the passivated system. Contrary to the other considered gases, which form metallic adlayers, SO2 treatment emerges as the most effective in creating an insulating passivation layer for dosages <= 1 mono-layer. The substantial Li->adsorbate charge transfer and adlayer relaxation produce marked elastic stiffening of the interface, with the smallest change shown by nitrogen-treated adlayers

    DEVELOPMENT AND EVALUATION OF ENVELOPE, SPECTRAL AND TIME ENHANCEMENT ALGORITHMS FOR AUDITORY NEUROPATHY

    Get PDF
    Auditory neuropathy (AN) is a hearing disorder that reduces the ability to detect temporal cues in speech, thus leading to deprived speech perception. Traditional amplification and frequency shifting techniques used in modern hearing aids are not suitable to assist individuals with AN due to the unique symptoms that result from the disorder. This study proposes a method for combining both speech envelope enhancement and time scaling to combine the proven benefits of each algorithm. In addition, spectral enhancement is cascaded with envelope and time enhancement to address the poor frequency discrimination in AN. The proposed speech enhancement strategy was evaluated using an AN simulator with normal hearing listeners under varying degrees of AN severity. The results showed a significant increase in word recognition scores for time scaling and envelope enhancement over envelope enhancement alone. Furthermore, the addition of spectral enhancement resulted in further increase in word recognition at profound AN severity

    An Evaluation of Vegetated Roofing Technology: Application at Air Force Plant Four, Building 15

    Get PDF
    The United States Air Force maintains thousands of facilities around the world. Many of these facilities have asphalt built up roofs or some other less than sustainable roofing system. In an effort to find roofing systems suitable for Air Force facilities that are both economically and environmentally friendly, this thesis investigated vegetated roofing as a possible alternative to conventional roofing systems. While vegetated roofs are a relatively new roofing system, they exhibit performance qualities that seem to be in line with Air Force needs. An investigation into the feasibility of vegetated roofing technology revealed that this roofing system has many positive economic and environmental characteristics that could benefit the United States Air Force and the Department of Defense. The potential use of this technology was researched specifically for application to building 15 at Air Force Plant 4 (AFP4) in Ft. Worth Texas. A combination of case studies, site visits, and a life cycle economic evaluation was used to compare vegetated roofing with conventional asphalt built up roofing that is typically used at AFP4. The research revealed multiple environmental benefits and few disadvantages. The life cycle costs combined with the environmental benefits of vegetated roofing show that this roofing system is indeed a feasible alternative for building 15

    Analysis of Antarctic Sea Ice Thickness: A Newly Created Database for 2000-2009

    Get PDF
    Observations of Antarctic sea ice thickness are sporadic in space and time, hindering knowledge of its variability. A proxy based on stage of development data from the National Ice Center (NIC) weekly operational charts is used to create a high-resolution time series of sea ice concentration, thickness and volume for 2000-2009. Record-length mean thickness and volume of Antarctic sea ice are 66.7 cm and 7.7 x10^3 km^3. The mean growth and decay seasons in the Southern Ocean and in the Ross sector are 210 days and 155 days, but at least at least one week shorter (growth) and longer (decay) in the Amundsen/Bellingshausen sector. Over 90% of the Antarctic continental shelf is covered with sea ice for 3-5 months, and for 2 to 4 months longer periods in the Amundsen/Bellingshausen and Ross sectors. Yearly mean sea ice area (extent) in the Southern Ocean increased at a rate of 0.71 x 10^6 km^2/decade (0.70 x 10^6 km^2/decade), equivalent to a 7.7 %/decade (6.3 %/decade) rise. A comparable trend of 9.1 %/decade (8.5 %/decade) is estimated in the Ross sector, at 0.21 x 10^6 km2/decade (0.23 x 10^6 km2/decade). The opposite trend is found in the Amundsen/Bellingshausen sector: a -0.15 x 10^6 km^2/decade (-0.17 x 10^6 km^2/decade) decline, or -14.6 %/decade (-13.4 %/decade). The estimated annual increase of Antarctic sea ice thickness is 22.6 cm/decade (49.2 %/decade) and of volume is 3.78 x 10^3 km^3/decade (68.3 %/decade). The Ross sector showed similar trends for thickness, at 23.8 cm/decade (47.0 %/decade), and volume, at 1.11 x 10^3 km^3/decade (75.8 %/decade). Thickness has increased in the Amundsen/Bellingshausen sector, 20.7 cm/decade (44.8 %/decade), but with a less pronounced volume rise of 0.17 x10^3 km^3/decade (26.0 %/decade). Monthly sea ice thickness anomalies show a weak response to the El Nino Southern Oscillation (ENSO) index. A strong positive response is observed in 2008 when a negative a negative ENSO index compounded to a positive Southern Annular Mode (SAM) index. Therefore the estimated increase of sea ice thickness in the Southern Ocean could be attributed to the prevailing atmospheric conditions with a positive SAM phase over the past decade
    • …
    corecore