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Ionic transport in conventional ionic solids is generally considered to proceed via independent
diffusion events or “hops”. This assumption leads to well-known Arrhenius expressions for transport
coefficients, and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics
simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion-
hopping with corresponding Poisson distributions to test the assumption of independent hopping
in these common structure-types. In all cases diffusion is a non-Poisson process, and hopping is
strongly correlated in time. In B1 the diffusion coefficient can be approximated by an Arrhenius
expression, though the physical significance of the parameters differs from that commonly assumed.
In low temperature B3 and B4 diffusion is characterised by concerted motion of multiple ions in
short closed loops. Diffusion coefficients can not be expressed in a simple Arrhenius form dependent
on single-ion free-energies, and intrinsic diffusion must be considered a many-body process.

Ionic transport in crystalline solids is a fundamental
process of prime importance to solid-state reactions and
the behaviour of solid-state devices such as batteries, fuel
cells, and chemical sensors. Mass and charge transport
are characterised by diffusion coefficients and ionic con-
ductivities respectively. Differences in transport rates
between materials depend on the relationships between
these ensemble transport coefficients and the microscopic
diffusion mechanisms that govern the motion of indi-
vidual ions. A long-standing question in this regard is
how this relationship between microscopic and macro-
scopic descriptions of transport varies with crystal struc-
ture [1]. Here we focus on “conventional” ionic struc-
tures, such as wurtzite and rocksalt, that are intrinsi-
cally poor ionic conductors. Understanding the relation-
ship between structure and transport in these materials
is motivated in part by observations of greatly enhanced
conductivities when they are prepared in nanoscale parti-
cles [2, 3], where local structure effects may be significant.

The strong effect of crystal structure on ionic trans-
port is exemplified by the ionic conductivities of AgI
polymorphs. Under ambient conditions AgI forms the
thermodynamically preferred wurtzite-structured (B4)
β phase or the metastable zincblende-structured (B3)
γ phase. Both phases are poor ionic conductors: at
420 K the conductivity of β-AgI is ∼4.5×10−4 Ω−1 cm−1

[4], and molecular dynamics simulations predict an even
lower intrinsic ionic conductivity for γ-AgI [5]. Above
420 K β-AgI undergoes a phase transition to the superi-
onic α phase, in which the iodide ions are arranged in
a bcc lattice with the mobile silver ions distributed over
one sixth of the available tetrahedral sites [6, 7]. The
β → α transition is associated with an increase in silver-

ion conductivity of over three orders of magnitude [8].
Applying pressure to β-AgI causes a phase transition to
a rock-salt-structured (B1) phase above 1.0 GPa, associ-
ated with an increase in room-temperature conductivity
of two orders of magnitude [9].

The excellent silver ion mobility of α-AgI is attributed
to the high concentration of vacant sites in the silver sub-
lattice, which gives low activation barriers to diffusion
[6, 7]. In contrast, the low-temperature B1, B3, and B4
phases have fully occupied silver sub-lattices in the per-
fect crystals, and ionic transport is expected to occur via
conventional Frenkel pair “hopping” mechanisms, where
thermally generated vacancies and interstitials diffuse by
a series of discrete events or hops [10].

For a generic hopping diffusion mechanism, if ion hop-
ping occurs at random (i.e. hopping probabilities of in-
dividual ions are statistically independent) then applica-
tion of Vineyard’s absolute rate theory allows the diffu-
sion coefficient, D, to be written in the well-known Ar-
rhenius form [11, 12]:

D ∝ n exp (−∆Ghop/kT ) , (1)

where n is the number of species capable of effecting hops
per unit volume, and ∆Ghop is the free energy barrier as-
sociated with the motion of a single ion [10, 11]. In an
ionic crystal n is usually considered to be the concen-
tration of point defects; n = ndef . At low temperatures
ndef is fixed by the concentration of extrinsic aliovalent
dopants or impurities and is independent of tempera-
ture. At high temperatures intrinsic defect formation
can dominate ndef and the expression for D can be mod-
ified to take this into account: e.g. for a Frenkel disor-
dered material, such as the low-temperature phases of
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FIG. 1. (Color online) Calculated transport coefficients for B1, B3, and B4 AgI: (a) Ionic conductivities, σ; (b) Ag+ diffusion

coefficients, D
(
Ag+

)
; (c) Nernst-Einstein factor, fNE. Dashed lines in (a) indicate conductivities too small to measure, giving

fNE → 0 in these regions in (c).

AgI, ndef = exp (−∆GFP/2kT ), with ∆GFP the free en-
ergy for Frenkel pair formation. This Independent Hop-
ping Model predicts an Arrhenius plot of log(D) versus
1/T will consist of a series of straight lines. The slope
of each line defines an activation energy that is linearly
dependent on free energy differences conceptually associ-
ated with displacements of individual ions. Because this
derivation relies on the application of absolute rate the-
ory, it is important for the understanding of ionic trans-
port in conventional (non-superionic) ionic solids to be
able to test the assumption of independently occurring
hops.

If ionic hopping is a random process the probability
of a specific hop occurring in time ∆t depends only on
the average hopping rate. This is formally equivalent to
requiring that ion hopping is a Poisson process with a
frequency distribution of

Pk(λ) =
λke−λ

k!
; (2)

where Pk is the probability of observing k events in time
window ∆t, and λ is the mean number of events in all
equivalent time windows [13].

In this Letter we describe molecular dynamics simula-
tions of the B1, B3, and B4 polymorphs of AgI. By ex-
pressing diffusion as a series of discrete diffusion events
(hops) we directly compare hopping frequency probabil-
ities against equivalent Poisson distributions to test the
validity of the Independent Hopping Model. In the B1,
B3, and B4 low-temperature phases of AgI we find in-
trinsic diffusion is a non-Poisson process and ion hops
are strongly correlated in time. The dominant transport
mechanism varies with lattice structure, which manifests
as qualitatively different relationships between ensem-
ble diffusion coefficients and ionic conductivities for the
tetrahedrally coordinated B3 and B4 phases versus the
octahedrally coordinated B1 phase.

Constant volume molecular dynamics simulations were
performed using the PRV rigid-ion potential [14], with

a timestep of 200 au (4.84 fs), for a total length of
3.2 × 106 steps (∼ 15.5 ns) at each temperature. System
sizes were B4: 896 ions, B3: 1008 ions, B1: 1000 ions.
The B4 and B3 calculations used an optimized zero-
pressure volume obtained for stoichiometric B4-AgI at

0 K of 71.68 Å
3

per molecular unit and a c/a ratio of 1.6,
following the procedure of Zimmer et al. [15]. The high-

pressure B1 phase was simulated at a volume of 67.27 Å
3

per molecular unit, which gives sufficient positive pres-
sure to stabilise this high-pressure phase across the range
of simulation temperatures [16].

Ionic conductivities, σ, and Ag+ diffusion coefficients,
D
(
Ag+

)
, were calculated from the long-time slopes of the

charge density and individual ion position mean-squared
displacements respectively [5]. The ionic conductivities
are ordered B3 < B4 � B1 (Fig. 1(a)), which is con-
sistent with the experimentally observed ×102 conduc-
tivity increase at room temperature for B1 AgI relative
to B4 [9]. The Ag+ diffusion coefficients show the same
trend as the ionic conductivities (Fig. 1(b)). Statistical
errors for the diffusion coefficients are reduced compared
with the conductivities because of the additional aver-
aging over Ag+ ions, and the diffusion data plotted as
log (D) versus 1000/T appear as straight lines, suggest-
ing Arrhenius-like behaviour.
σ and D are related by the Nernst-Einstein equation,

σ

D
=
nq2

kT
fNE; (3)

where n is the number of mobile ions per unit volume
and q their charge. fNE is the Nernst-Einstein factor. In
cases where ionic motion is correlated, charge and mass
transport are not equivalent and fNE deviates from unity.
For independent vacancy and interstitial hopping mech-
anisms in the B1, B3, and B4 lattices calculated val-
ues of fNE are in the range 1—3 [17]. Values of fNE

from the simulation data are shown in Fig. 1(c). For B1
fNE ≈ 1.4 across the temperature range, which is con-
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sistent with a combination of independent vacancy and
interstitial hopping by thermally generated Frenkel pairs.
B3 and B4, however, show a strong temperature depen-
dence: fNE ≈ 1 at high temperatures but decays approx-
imately exponentially as the temperature decreases. The
low temperature values of fNE � 1 are inconsistent with
the calculated values for independent vacancy or intersti-
tial hopping [17], which suggests that alternate diffusion
mechanisms mediate intrinsic Ag+ transport in B3 and
B4 AgI.

For the Independent Hopping Model to be valid it is
necessary that ion hopping is a Poisson process. For each
simulation trajectory we have expressed the ionic trans-
port process as sequences of “diffusion events”. At ev-
ery timestep each Ag+ ion occupies a specific lattice or
interstitial site [18]. If an Ag+ ion moves out of a lat-
tice site, it must later either return to this same site, in
which case the sequence does not contribute to diffusion
and is discarded, or occupy a second lattice site. The
process of an Ag+ ion moving from one lattice site to
another is classified as a diffusion event or “hop”. Any
such process occurs over a number of simulation steps,
and to simplify our analysis we define a diffusion event
as being coincident with the final site-occupation. The
set of diffusion events provides a discretised microscopic
description of the diffusion dynamics throughout a simu-
lation. In the AgI systems modelled here nearly all diffu-
sion events consist of motion between nearest-neighbour
lattice sites, and the average rate of these hops is propor-
tional to the macroscopic diffusion coefficient (cf. Fig. S1
of the Supplemental Material [19].)[20].

For any discrete process, the probability of k events
occuring in time ∆t is described by the probability mass
function (PMF). Figs. 2(a,b) show diffusion event PMFs
observed for non-stoichiometric B1, B3, and B4 AgI
simulations, constructed with two Ag+ ions either re-
moved or added to give an excess of vacancies or inter-
stitials. Under these conditions diffusion is dominated
by the hopping of these extrinsic point defects. Compar-
ing these PMFs with exact Poisson distributions for the
same average values of k shows close agreement: under
non-stoichiometric conditions transport of excess Ag+ va-
cancies and interstitials is consistent with independent
hopping and the derivation that leads to Eqn. 1 is valid.
For stoichiometric B1, B3, and B4, however, there are
large discrepancies between the diffusion event PMFs and
the corresponding Poisson distributions [21]. All three
polymorphs show non-Poisson diffusion, even though fNE

deviated from values for independent hopping processes
only for the B3 and B4 phases.

The disagreement between the diffusion event PMFs
and the corresponding exact Poisson distributions in-
dicates temporal correlation between intrinsic diffusion
events in B1, B3, and B4 AgI. This is also evident in
running totals of diffusion events taken from individual
representative simulations (Fig. 3). Within any single
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FIG. 2. (Color online) PMFs for k diffusion events observed
in time ∆t = 12500 timesteps (≈ 60.5 ps). Simulation data
(filled circles) are shown for B1 (yellow), B3 (green), and
B4 (blue) AgI on both linear (left panels) and log10 (right
panels) scales. (a) Excess vacancies (300 K / 350 K / 350 K)
(b) Excess interstitials (300 K / 350 K / 350 K) (c) Stoichio-
metric (450 K / 550 K / 550 K). Open circles (dashed lines)
show exact Poisson distributions with equivalent values of
〈k〉. Data for stoichiometric B4 (550 K) with ∆t = 2500 to
62500 timesteps are included in the Supplemental Material
(Fig. S3).

analysis frame (250 timesteps ≈ 1.2 ps) no single diffusion
events are observed. Diffusion events occur in clusters
that are separated by long times containing zero diffu-
sion events. The B1 data exhibit “cascades” of multiple
diffusion events (Fig. 3) as well as smaller clusters con-
taining only a few events.

The non-Poisson hopping statistics for these low tem-
perature phases mean that intrinsic ionic transport in
these materials can not be described as a simple average
over independent diffusion events. Instead examining the
relationships between individual diffusion events is nec-
essary to understand the net contributions to mass and
charge transport. The relationship between individual
diffusion events can be described by constructing “diffu-
sion chains”. These chains are constructed by connecting
pairs of events that share one common lattice site as the
origin site for one event and the destination site for the
second event. A diffusion event cannot be completed be-
fore the ion originally occupying the destination site de-
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450 K in time ∆t = 5000 timesteps, only considering sections
of trajectories where “cascades” of diffusion events are ob-
served (solid black circles). The corresponding exact Poisson
distribution is shown in open black circles. PMFs for extrin-
sic vacancy and interstitial diffusion in B1 AgI at the same
temperature are shown in red squares and blue triangles re-
spectively.

parts, thus initiating a second diffusion event that can,
in turn, only be completed after a third accessible site is
vacated (see Supplemental Material: Fig. S2) [22]. This
definition of chains provides a course-grained description
of transport that ignores the chronological order of diffu-
sion events. The net contribution of a chain to D

(
Ag+

)
is proportional to the number of diffusion events in each
chain, whereas the contribution to σ depends on the vec-
tor sum of all component diffusion events.

In a stoichiometric system, diffusion chains are initi-
ated by Frenkel pair formation and terminated by Frenkel
pair recombination. To understand the contribution spe-
cific chains make towards ensemble diffusion and con-
ductivity it is instructive to consider the limits of “long”
versus “short” chains. For long chains the transport be-
haviour will approximate that of a well-separated non-
interacting vacancy and interstitial pair, with each de-
fect expected to diffuse by an independent hopping pro-
cess that obeys Poisson statistics. This “open chain”
behaviour is exhibited during the multiple-hop cascades
observed in the B1 simulations (cf. Fig. 3). The diffusion
event PMF generated by analysing only these cascades
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diffusion event occurring in a chain of length 3 or 4 versus a
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closely follows the corresponding exact Poisson distribu-
tion, and is quantitatively consistent with an average of
the hopping rates from non-stoichiometric excess vacancy
and interstitial simulations performed at the same tem-
perature. Because transport in long chains tends to that
of independent vacancy–interstitial pairs, in a system
where long chains dominate transport fNE is predicted to
be ≈ 1. The limit of short chains corresponds to closed
loops. Although the contribution to ensemble diffusion is
the same as in the open-chain limit; proportional to the
number of diffusion events in the chain; the contribution
to the ionic conductivity is zero, because a closed loop of
diffusion events gives no net displacment of charge. For
a system where transport is effected predominantly by
short chains this predicts fNE → 0.

The relationship between chain length and contribu-
tion to ionic conductivity in these limiting cases suggests
that the contrasting behaviour of fNE in B1, B3, and
B4 is connected to the distribution of chain lengths for
each simulation. As a coarse measure of whether diffu-
sion occurs predominantly in short versus long chains, we
calculate the probability that a diffusion event in a sim-
ulation occurs in a chain of length < 5, denoted P{3,4}
(Fig. 5(a)) [23]. The relative contribution to transport
from short versus long chains can then be expressed as a
free energy difference ∆G{3,4};

∆G{3,4} = −kT ln
P{3,4}

1− P{3,4}
; (4)

plotted in Fig. 5(b). For B1, P{3,4} is low at all temper-
atures (∆G{3,4} > 0). Ionic transport is dominated by
diffusion events in extended chains, and behaves approxi-
mately as for independent vacancy–interstitial pairs. Ne-
glecting contributions from the small proportion of short
chains, D

(
Ag+

)
can be expressed in an Arrhenius form

that depends on the free energy associated with forming
independent vacancy–interstitial Frenkel pairs; ∆GiFP:

D ∝ exp (−∆GiFP/2kT ) exp (−∆Ghop/kT ) . (5)

For B3 and B4 at low temperatures P{3,4} is high
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(∆G{3,4} < 0). Transport is characterised by short
chains, which must be closed loops and therefore do not
contribute to ionic conductivity. This explains the strong
deviations from Nernst-Einstein behaviour at low tem-
peratures in these phases. With increasing temperature
a greater proportion of diffusion events occur within ex-
tended chains (∆G{3,4} approaches 0). This is consistent
with the increase of fNE with temperature, and the re-
covery of “normal” Nernst-Einstein behaviour at high T .
The coincident increase of D

(
Ag+

)
and fNE with tem-

perature predicts a rapid increase of σ with T . This
is consistent with experimental super-Arrhenius conduc-
tivities observed for B3 and B4 AgI, and suggests this
phenomenon can be explained by a switch in the domi-
nant transport mechanism from short to long chains with
increasing temperature [4, 24].

We have shown that the common assumption that ionic
transport occurs by independent hops of mobile ions is
invalid for stoichiometric B1, B3, and B4 AgI, which
can be considered representative of conventional (non-
superionic) crystalline solids. For diffusion in the stoi-
chiometric materials, thermally created Frenkel pairs do
not necessarily dissociate into independent vacancies and
interstitials. This has consequences for the relationship
between the hopping statistics of individual ions and
the ensemble transport coefficients measured in experi-
ments. We have identified two classes of non-Poisson ion-
hopping, which are distinguished by the spatial correla-
tions between hops. When diffusion occurs via extended
open chains of hops then defects behave similarly to non-
interacting species, and the diffusion coefficient can be
expressed in an approximate Arrhenius form (Eqn. 5).
Alternately, when diffusion occurs via short closed loops
of hops then diffusion coefficients can not be expressed in
a simple Arrhenius form that depends only on single-ion
free-energies, and intrinsic diffusion must be considered
a many-body process. In general, intrinsic diffusion in
B1, B3, and B4-structured materials should not be as-
sumed to occur via independent hopping, and it may not
be possible to relate activation energies for experimental
transport coefficients to microscopic free energy barriers
involving the motion of single ions [25]. Although we are
not aware of experimental data that confirm these find-
ings, we hope that the demonstration that ionic transport
in even structurally simple ionic solids can be much more
complex than previously assumed will stimulate experi-
mental studies in this area.

For AgI the octahedrally coordinated B1 phase ex-
hibits predominantly open chain diffusion, whereas the
tetrahedrally coordinated B3 and B4 phases at low tem-
peratures exhibit predominantly closed chain diffusion,
showing defect pairs remain much more strongly bound
in the tetrahedral B3 and B4 phases than the B1 phase.
This qualitative difference in mechanism is consistent
with the increase in conductivity of two orders of magni-
tude during the pressure-driven B4 → B1 phase transi-

tion in AgI. Including the superionic α phase, AgI there-
fore exhibits a remarkable variation between three quali-
tatively different transport mechanisms within the same
material, purely as a function of crystal structure.
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