44 research outputs found

    A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Full text link
    The merging neutron star gravitational wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ\gamma-rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ\gamma-ray, X-ray and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical and infrared emission are shown to probe material torn during the merger and subsequently heated by the decay of freshly synthesized rr-process material. The simplest hypothesis that the non-thermal emission is due to a low-luminosity short γ\gamma-ray burst (sGRB) seems to agree with the present data. While low luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.Comment: 9 pages, 5 figures, accepted to ApJ Letter

    Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Full text link
    11 hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient SSS17a was discovered in the galaxy NGC 4993. While the gravitational wave data indicate GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints of the nature of that system. Here we synthesize all optical and near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration. We find that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We find that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.Comment: 21 pages, 4 figures, accepted to Scienc

    The ACS Nearby Galaxy Survey Treasury III: Cepheids in the Outer Disk of M81

    Get PDF
    The ACS Nearby Galaxy Survey Treasury (ANGST) has acquired deep ACS imaging of a field in the outer disk of the large spiral galaxy M81. These data were obtained over a total of 20 HST orbits, providing a baseline long enough to reliably identify Cepheid variable stars in the field. Fundamental mode and first overtone types have been distinguished through comparative fits with corresponding Cepheid light curve templates derived from principal component analysis of confirmed Cepheids in the LMC, SMC, and Milky Way. A distance modulus of 27.78 pm 0.05_random pm 0.14_systematic with a corresponding distance of 3.60 pm 0.23 Mpc has been calculated from a sample of 11 fundamental mode and 2 first overtone Cepheids (assuming an LMC distance modulus of mu_LMC=18.41 pm 0.10_r pm 0.13_s).Comment: 10 pages, 9 figures. Accepted for publication in AJ Fixed typo

    The Young and the Dustless: Interpreting Radio Observations of UltraViolet Luminous Galaxies

    Get PDF
    Ultraviolet Luminous Galaxies (UVLGs) have been identified as intensely star-forming, nearby galaxies. A subset of these, the supercompact UVLGs, are believed to be local analogs of high redshift Lyman Break Galaxies. Here we investigate the radio continuum properties of this important population for the first time. We have observed 42 supercompact UVLGs with the VLA, all of which have extensive coverage in the UV/optical by GALEX and SDSS. Our analysis includes comparison samples of multiwavelength data from the Spitzer First Look Survey and from the SDSS-Galex matched catalogs. In addition we have Spitzer MIPS data for 24 of our galaxies and find that they fall on the radio-FIR correlation of normal star-forming galaxies. We find that our galaxies have lower radio-to-UV ratios and lower Balmer decrements than other local galaxies with similar (high) star formation rates. Optical spectra show they have lower Dn(4000) and HdeltaA indices, higher Hbeta emission-line equivalents widths, and higher [OIII]5007/Hbeta emission-line ratios than normal star forming galaxies. Comparing these results to galaxy spectral evolution models we conclude that supercompact UVLGs are distinguished from normal star forming galaxies firstly by their high specific star formation rates. Moreover, compared to other types of galaxies with similar star formation rates, they have significantly less dust attenuation. In both regards they are similar to Lyman Break Galaxies. This suggests that the process that causes star formation in the supercompact UVLGs differs from other local star forming galaxies, but may be similar to Lyman Break Galaxies.Comment: 37 pages, 13 figures, accepted and scheduled to appear in ApJS December 2007 (GALEX Special Issue

    The Star Formation and Extinction Co-Evolution of UV-Selected Galaxies over 0.05<z<1.2

    Get PDF
    We use a new stacking technique to obtain mean mid IR and far IR to far UV flux ratios over the rest near-UV/near-IR color-magnitude diagram. We employ COMBO-17 redshifts and COMBO-17 optical, GALEX far and near UV, Spitzer IRAC and MIPS Mid IR photometry. This technique permits us to probe infrared excess (IRX), the ratio of far IR to far UV luminosity, and specific star formation rate (SSFR) and their co-evolution over two orders of magnitude of stellar mass and redshift 0.1<z<1.2. We find that the SSFR and the characteristic mass (M_0) above which the SSFR drops increase with redshift (downsizing). At any given epoch, IRX is an increasing function of mass up to M_0. Above this mass IRX falls, suggesting gas exhaustion. In a given mass bin below M_0 IRX increases with time in a fashion consistent with enrichment. We interpret these trends using a simple model with a Schmidt-Kennicutt law and extinction that tracks gas density and enrichment. We find that the average IRX and SSFR follows a galaxy age parameter which is determined mainly by the galaxy mass and time since formation. We conclude that blue sequence galaxies have properties which show simple, systematic trends with mass and time such as the steady build-up of heavy elements in the interstellar media of evolving galaxies and the exhaustion of gas in galaxies that are evolving off the blue sequence. The IRX represents a tool for selecting galaxies at various stages of evolution.Comment: Accepted for publication in GALEX Special Ap.J.Suppl., December, 200

    UV Star Formation Rates in the Local Universe

    Get PDF
    We measure star formation rates of ~50,000 optically-selected galaxies in the local universe (z~0.1), spanning a range from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (UV) and SDSS (optical) photometry to a library of population synthesis models that include dust attenuation. For star-forming galaxies, our UV-based SFRs compare remarkably well with those derived from SDSS H alpha. Deviations from perfect agreement between these two methods are due to differences in the dust attenuation estimates. In contrast to H alpha, UV provides reliable SFRs for galaxies with weak or no H alpha emission, and where H alpha is contaminated with an emission from an AGN. We use full-SED SFRs to calibrate a simple prescription that uses GALEX UV magnitudes to produce good SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGN, (2) those hosting an AGN, and for (3) galaxies without H alpha emission. We find that the three have distinct star formation histories, with AGN lying intermediate between the star-forming and the quiescent galaxies. Normal star forming galaxies (without an AGN) lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. Weak AGN, while also massive, have lower SFR, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent (red sequence) galaxies via strong and weak AGN. We confirm that some galaxies with no H alpha emission show signs of SF in the UV. We derive a UV-based cosmic SFR density at z=0.1 with smaller total error than previous measurements (abridged).Comment: Accepted for publication in ApJ (Special GALEX Supplement issue - Dec 2007). v2: Typo in Eq. 2 correcte

    Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation

    Get PDF
    The meaningful comparison of models of galaxy evolution to observations is critically dependent on the accurate treatment of dust attenuation. To investigate dust absorption and emission in galaxies we have assembled a sample of ~1000 galaxies with ultraviolet (UV) through infrared (IR) photometry from GALEX, SDSS, and Spitzer and optical spectroscopy from SDSS. The ratio of IR to UV emission (IRX) is used to constrain the dust attenuation in galaxies. We use the 4000A break as a robust and useful, although coarse, indicator of star formation history (SFH). We examine the relationship between IRX and the UV spectral slope (a common attenuation indicator at high-redshift) and find little dependence of the scatter on 4000A break strength. We construct average UV through far-IR spectral energy distributions (SEDs) for different ranges of IRX, 4000A break strength, and stellar mass (M_*) to show the variation of the entire SED with these parameters. When binned simultaneously by IRX, 4000A break strength, and M_* these SEDs allow us to determine a low resolution average attenuation curve for different ranges of M_*. The attenuation curves thus derived are consistent with a lambda^{-0.7} attenuation law, and we find no significant variations with M_*. Finally, we show the relationship between IRX and the global stellar mass surface density and gas-phase-metallicity. Among star forming galaxies we find a strong correlation between IRX and stellar mass surface density, even at constant metallicity, a result that is closely linked to the well-known correlation between IRX and star-formation rate.Comment: 12 pages, 8 figures, 2 tables, appearing in the Dec 2007 GALEX special issue of ApJ Supp (29 papers

    The GALEX Arecibo SDSS Survey. I. Gas Fraction Scaling Relations of Massive Galaxies and First Data Release

    Get PDF
    We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large program that is gathering high quality HI-line spectra using the Arecibo radio telescope for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025<z<0.05, selected from the SDSS spectroscopic and GALEX imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5%) is reached. This paper presents the first Data Release, consisting of ~20% of the final GASS sample. We use this data set to explore the main scaling relations of HI gas fraction with galaxy structure and NUV-r colour. A large fraction (~60%) of the galaxies in our sample are detected in HI. We find that the atomic gas fraction decreases strongly with stellar mass, stellar surface mass density and NUV-r colour, but is only weakly correlated with galaxy bulge-to-disk ratio (as measured by the concentration index of the r-band light). We also find that the fraction of galaxies with significant (more than a few percent) HI decreases sharply above a characteristic stellar surface mass density of 10^8.5 Msun kpc^-2. The fraction of gas-rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star-forming cloud and the red sequence of passively-evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between gas fraction and other galaxy properties. [abridged]Comment: 25 pages, 12 figures. Accepted for publication in MNRAS. Version with high resolution figures available at http://www.mpa-garching.mpg.de/GASS/pubs.ph

    Largest M Dwarf Flares from ASAS-SN

    Get PDF
    The All-sky Automated Survey for Supernovae (ASAS-SN) is the only project in existence to scan the entire sky in optical light approximately every day, reaching a depth of g ~ 18 mag. Over the course of its first 4 yr of transient alerts (2013–2016), ASAS-SN observed 53 events classified as likely M dwarf flares. We present follow-up photometry and spectroscopy of all 53 candidates, confirming flare events on 47 M dwarfs, one K dwarf, and one L dwarf. The remaining four objects include a previously identified T Tauri star, a young star with outbursts, and two objects too faint to confirm. A detailed examination of the 49 flare star light curves revealed an additional six flares on five stars, resulting in a total of 55 flares on 49 objects ranging in V-band contrast from ΔV = −1 to −10.2 mag. Using an empirical flare model to estimate the unobserved portions of the flare light curve, we obtain lower limits on the V-band energy emitted during each flare, spanning log(E_V/erg) = 32–35, which are among the most energetic flares detected on M dwarfs. The ASAS-SN M dwarf flare stars show a higher fraction of Hα emission, as well as stronger Hα emission, compared to M dwarfs selected without reference to activity, consistent with belonging to a population of more magnetically active stars. We also examined the distribution of tangential velocities, finding that the ASAS-SN flaring M dwarfs are likely to be members of the thin disk and are neither particularly young nor old
    corecore