860 research outputs found

    Hierarchical Cosmic Shear Power Spectrum Inference

    Full text link
    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models \emph{a posteriori} without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear EE-mode, BB-mode and EBEB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both EE- and BB-modes.Comment: 16 pages, 8 figures, accepted by MNRA

    IGRINS spectroscopy of Class I sources: IRAS 03445+3242 and IRAS 04239+2436

    Full text link
    We have detected molecular and atomic line emission from the hot and warm disks of two Class I sources, IRAS 03445+3242 and IRAS 04239+2436 using the high resolution Immersion GRating INfrared Spectrograph (IGRINS). CO overtone band transitions and near-IR lines of Na I and Ca I, all in emission, trace the hot inner disk while CO rovibrational absorption spectra of the first overtone transition trace the warm gas within the inner few AU of the disk. The emission-line profiles for both sources show evidence for Keplerian disks. A thin Keplerian disk with power-law temperature and column density profiles with a projected rotational velocity of \sim60--75 km s1^{-1} and a gas temperature of \sim3500 K at the innermost annulus can reproduce the CO overtone band emission. Na I and Ca I emission lines also arise from this disk, but they show complicated line features possibly affected by photospheric absorption lines. Multi-epoch observations show asymmetric variations of the line profiles on one-year (CO overtone bandhead and atomic lines for IRAS 03445+3242) or on one-day (atomic lines for IRAS 04239+2436) time scales, implying non-axisymmetric features in disks. The narrow CO rovibrational absorption spectra (vv=0\rightarrow2) indicate that both warm (>> 150 K) and cold (\sim20--30 K) CO gas are present along the line of sight to the inner disk. This study demonstrates the power of IGRINS as a tool for studies of the sub-AU scale hot and AU-scale warm protoplanetary disks with its simultaneous coverage of the full H and K bands with high spectral resolution (RR= 45,000) allowing many aspects of the sources to be investigated at once.Comment: Accepted for publication in Ap

    Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf

    Get PDF
    Following the discovery of the T8 subdwarf WISEJ200520.38+542433.9 (Wolf 1130C), with common proper motion to a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find that the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V band photometry phase folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) provide radial velocities and a projected rotational velocity (v sin i) of 14.7 +/- 0.7 km/s for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal-locking, we calculate an inclination of i=29 +/- 2 degrees. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary (1.24+0.19-0.15 Msun). Its non-detection between 0.2 and 2.5 microns implies that it is an old (>3.7 Gyr) and cool (Teff<7000K) ONe white dwarf. This is the first ultramassive white dwarf within 25pc. The evolution of Wolf 1130AB into a cataclysmic variable is inevitable, making it a potential Type Ia supernova progenitor. The formation of a triple system with a primary mass >100 times the tertiary mass and the survival of the system through the common-envelope phase, where ~80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate mass stars.Comment: 37 pages, 9 Figures, 5 Table

    Effective Temperatures of Low-Mass Stars from High-Resolution H-band Spectroscopy

    Get PDF
    High-resolution, near-infrared spectra will be the primary tool for finding and characterizing Earth-like planets around low-mass stars. Yet, the properties of exoplanets can not be precisely determined without accurate and precise measurements of the host star. Spectra obtained with the Immersion GRating INfrared Spectrometer (IGRINS) simultaneously provide diagnostics for most stellar parameters, but the first step in any analysis is the determination of the effective temperature. Here we report the calibration of high-resolution H-band spectra to accurately determine effective temperature for stars between 4000-3000 K (\simK8--M5) using absorption line depths of Fe I, OH, and Al I. The field star sample used here contains 254 K and M stars with temperatures derived using BT-Settl synthetic spectra. We use 106 stars with precise temperatures in the literature to calibrate our method with typical errors of about 140 K, and systematic uncertainties less than \sim120 K. For the broadest applicability, we present Teff_{\rm eff}--line-depth-ratio relationships, which we test on 12 members of the TW Hydrae Association and at spectral resolving powers between \sim10,000--120,000. These ratios offer a simple but accurate measure of effective temperature in cool stars that is distance and reddening independent.Comment: 19 pages, 11 figures and 3 tables. Accepted in Ap

    Accurate estimators of power spectra in N-body simulations

    Full text link
    abridged] A method to rapidly estimate the Fourier power spectrum of a point distribution is presented. This method relies on a Taylor expansion of the trigonometric functions. It yields the Fourier modes from a number of FFTs, which is controlled by the order N of the expansion and by the dimension D of the system. In three dimensions, for the practical value N=3, the number of FFTs required is 20. We apply the method to the measurement of the power spectrum of a periodic point distribution that is a local Poisson realization of an underlying stationary field. We derive explicit analytic expression for the spectrum, which allows us to quantify--and correct for--the biases induced by discreteness and by the truncation of the Taylor expansion, and to bound the unknown effects of aliasing of the power spectrum. We show that these aliasing effects decrease rapidly with the order N. The only remaining significant source of errors is reduced to the unavoidable cosmic/sample variance due to the finite size of the sample. The analytical calculations are successfully checked against a cosmological N-body experiment. We also consider the initial conditions of this simulation, which correspond to a perturbed grid. This allows us to test a case where the local Poisson assumption is incorrect. Even in that extreme situation, the third-order Fourier-Taylor estimator behaves well. We also show how to reach arbitrarily large dynamic range in Fourier space (i.e., high wavenumber), while keeping statistical errors in control, by appropriately "folding" the particle distribution.Comment: 18 Pages, 9 Figures. Accepted for publication in MNRAS. The Fourier-Taylor module as well as the associated power spectrum estimator tool we propose is available as an F90 package, POWMES, at http://www.projet-horizon.fr or on request from the author

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex

    Ontogeny of Recognition Specificity and Functionality for the Broadly Neutralizing Anti-HIV Antibody 4E10

    Get PDF
    The process of antibody ontogeny typically improves affinity, on-rate, and thermostability, narrows polyspecificity, and rigidifies the combining site to the conformer optimal for binding from the broader ensemble accessible to the precursor. However, many broadly-neutralizing anti-HIV antibodies incorporate unusual structural elements and recognition specificities or properties that often lead to autoreactivity. The ontogeny of 4E10, an autoreactive antibody with unexpected combining site flexibility, was delineated through structural and biophysical comparisons of the mature antibody with multiple potential precursors. 4E10 gained affinity primarily by off-rate enhancement through a small number of mutations to a highly conserved recognition surface. Controverting the conventional paradigm, the combining site gained flexibility and autoreactivity during ontogeny, while losing thermostability, though polyspecificity was unaffected. Details of the recognition mechanism, including inferred global effects due to 4E10 binding, suggest that neutralization by 4E10 may involve mechanisms beyond simply binding, also requiring the ability of the antibody to induce conformational changes distant from its binding site. 4E10 is, therefore, unlikely to be re-elicited by conventional vaccination strategies

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed
    corecore