Following the discovery of the T8 subdwarf WISEJ200520.38+542433.9 (Wolf
1130C), with common proper motion to a binary (Wolf 1130AB) consisting of an M
subdwarf and a white dwarf, we set out to learn more about the old binary in
the system. We find that the A and B components of Wolf 1130 are tidally
locked, which is revealed by the coherence of more than a year of V band
photometry phase folded to the derived orbital period of 0.4967 days. Forty new
high-resolution, near-infrared spectra obtained with the Immersion Grating
Infrared Spectrometer (IGRINS) provide radial velocities and a projected
rotational velocity (v sin i) of 14.7 +/- 0.7 km/s for the M subdwarf. In
tandem with a Gaia parallax-derived radius and verified tidal-locking, we
calculate an inclination of i=29 +/- 2 degrees. From the single-lined orbital
solution and the inclination we derive an absolute mass for the unseen primary
(1.24+0.19-0.15 Msun). Its non-detection between 0.2 and 2.5 microns implies
that it is an old (>3.7 Gyr) and cool (Teff<7000K) ONe white dwarf. This is the
first ultramassive white dwarf within 25pc. The evolution of Wolf 1130AB into a
cataclysmic variable is inevitable, making it a potential Type Ia supernova
progenitor. The formation of a triple system with a primary mass >100 times the
tertiary mass and the survival of the system through the common-envelope phase,
where ~80% of the system mass was lost, is remarkable. Our analysis of Wolf
1130 allows us to infer its formation and evolutionary history, which has
unique implications for understanding low-mass star and brown dwarf formation
around intermediate mass stars.Comment: 37 pages, 9 Figures, 5 Table