98 research outputs found

    Sperm Microbiota and Its Impact on Semen Parameters

    Get PDF
    Compared to its female counterpart, the microbiota of the male genital tract has not been studied extensively. With this study, we aimed to evaluate the bacterial composition of seminal fluid and its impact on sperm parameters. We hypothesized that a dysbiotic microbiota composition may have an influence on sperm quality. Semen samples of 26 men with normal spermiogram and 68 men with at least one abnormal spermiogram parameter were included in the study. Samples were stratified based on total sperm count, spermatozoa concentration, progressive motility, total motility and spermatozoa morphology. Microbiota profiling was performed using 16S rRNA gene amplicons sequencing and total bacterial load was determined using a panbacterial quantitative PCR. Semen samples broadly clustered into three microbiota profiles: Prevotella-enriched, Lactobacillus-enriched, and polymicrobial. Prevotella-enriched samples had the highest bacterial load (p < 0.05). Network analysis identified three main co-occurrence modules, among which two contained bacteria commonly found in the vaginal flora. Genera from the same module displayed similar oxygen requirements, arguing for the presence of different ecological niches for bacteria that colonize semen through the passage. Contrary to our hypothesis, shifts in overall microbiota composition (beta-diversity) did not correlate with spermiogram parameters. Similarly, we did not find any difference in microbial richness or diversity (alpha-diversity). Differential abundance testing, however, revealed three specific genera that were significantly enriched or depleted in some of the sperm quality groups (p < 0.05). Prevotella relative abundance was increased in samples with defective sperm motility while Staphylococcus was increased in the corresponding control group. In addition, we observed an increased relative abundance of Lactobacillus in samples with normal sperm morphology. Our study indicates that overall bacterial content of sperm might not play a major role in male infertility. Although no major shifts in microbiota composition or diversity were found, the differential abundance of specific bacterial genera in the sperm suggests that a small subset of microbes might impact the spermatozoal physiology during sperm transition, more specifically motility and morphology. Further studies are required to challenge this finding and develop potential strategies to induce the formation of a healthy seminal microbiota

    Protein Kinase C Ξ Is Critical for the Development of In Vivo T Helper (Th)2 Cell But Not Th1 Cell Responses

    Get PDF
    The serine/threonine-specific protein kinase C (PKC)-ξ is predominantly expressed in T cells and localizes to the center of the immunological synapse upon T cell receptor (TCR) and CD28 signaling. T cells deficient in PKC-ξ exhibit reduced interleukin (IL)-2 production and proliferative responses in vitro, however, its significance in vivo remains unclear. We found that pkc-ξ−/− mice were protected from pulmonary allergic hypersensitivity responses such as airway hyperresponsiveness, eosinophilia, and immunoglobulin E production to inhaled allergen. Furthermore, T helper (Th)2 cell immune responses against Nippostrongylus brasiliensis were severely impaired in pkc-ξ−/− mice. In striking contrast, pkc-ξ−/− mice on both the C57BL/6 background and the normally susceptible BALB/c background mounted protective Th1 immune responses and were resistant against infection with Leishmania major. Using in vitro TCR transgenic T cell–dendritic cell coculture systems and antigen concentration-dependent Th polarization, PKC-ξ–deficient T cells were found to differentiate into Th1 cells after activation with high concentrations of specific peptide, but to have compromised Th2 development at low antigen concentration. The addition of IL-2 partially reconstituted Th2 development in pkc-ξ−/− T cells, consistent with an important role for this cytokine in Th2 polarization. Taken together, our results reveal a central role for PKC-ξ signaling during Th2 responses

    Dyslipidemia inhibits Toll-like receptor–induced activation of CD8α-negative dendritic cells and protective Th1 type immunity

    Get PDF
    Environmental factors, including diet, play a central role in influencing the balance of normal immune homeostasis; however, many of the cellular mechanisms maintaining this balance remain to be elucidated. Using mouse models of genetic and high-fat/cholesterol diet–induced dyslipidemia, we examined the influence of dyslipidemia on T cell and dendritic cell (DC) responses in vivo and in vitro. We show that dyslipidemia inhibited Toll-like receptor (TLR)–induced production of proinflammatory cytokines, including interleukin (IL)-12, IL-6, and tumor necrosis factor-α, as well as up-regulation of costimulatory molecules by CD8α− DCs, but not by CD8α+ DCs, in vivo. Decreased DC activation profoundly influenced T helper (Th) cell responses, leading to impaired Th1 and enhanced Th2 responses. As a consequence of this immune modulation, host resistance to Leishmania major was compromised. We found that oxidized low-density lipoprotein (oxLDL) was the key active component responsible for this effect, as it could directly uncouple TLR-mediated signaling on CD8α− myeloid DCs and inhibit NF-ÎșB nuclear translocation. These results show that a dyslipidemic microenvironment can directly interfere with DC responses to pathogen-derived signals and skew the development of T cell–mediated immunity

    The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    Get PDF
    We thank Manuel Kulagin for technical help, Pierre Bonnaventure for portal vein blood sampling, Francisco Sepulveda for technical assistance in GS-MS acquisition, and Dorothee Hahne (Metabolomics Australia, University of Western Australia) for human samples SCFA isolation, acquisition, and analysis. We also thank Cristina Cartoni (Phenotyping Unit, EPFL) for Milliplex analysis, Jessica Dessimoz and her team from the Histology Core Facility (EPFL), Miguel Garcia and his team from the Flow Cytometry Core Facility (EPFL), and staff from the EPFL CPG animal house for excellent animal care. The computations were partially performed at the Vital-IT Center for high-performance computing of the SIB Swiss Institute of Bioinformatics (http://www.vital-it.ch). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 310948. Funding for A.W.W. and a subset of the 16S rRNA gene sequencing was provided by the Wellcome Trust (grant number WT 098051). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Fibroblastic Reticular Cells From Lymph Nodes Attenuate T Cell Expansion by Producing Nitric Oxide

    Get PDF
    Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos−/− mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation

    Immune Antibodies and Helminth Products Drive CXCR2-Dependent Macrophage-Myofibroblast Crosstalk to Promote Intestinal Repair

    Get PDF
    Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΊ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΊ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΊ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΊ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing

    Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation

    Get PDF
    Barrier integrity is central to the maintenance of healthy immunological homeostasis. Impaired skin barrier function is linked with enhanced allergen sensitization and the development of diseases such as atopic dermatitis (AD), which can precede the development of other allergic disorders, for example, food allergies and asthma. Epidemiological evidence indicates that children suffering from allergies have lower levels of dietary fibre-derived short-chain fatty acids (SCFA). Using an experimental model of AD-like skin inflammation, we report that a fermentable fibre-rich diet alleviates systemic allergen sensitization and disease severity. The gut-skin axis underpins this phenomenon through SCFA production, particularly butyrate, which strengthens skin barrier function by altering mitochondrial metabolism of epidermal keratinocytes and the production of key structural components. Our results demonstrate that dietary fibre and SCFA improve epidermal barrier integrity, ultimately limiting early allergen sensitization and disease development. The Graphical Abstract was designed using Servier Medical Art images (https://smart.servier.com). [Image: see text

    Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants

    Get PDF
    The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks’ gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers’ own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut
    • 

    corecore