36 research outputs found

    Optically Mapping Multiple Bacterial Genomes Simultaneously in a Single Run

    Get PDF
    Optical mapping of bacterial chromosomes provides an unambiguous low-resolution sequence scaffold of the entire chromosome. In comparison to some techniques, such as pulse field gel electrophoresis, cost and throughput limit the application of this technique outside of genome finishing. We have demonstrated the production of multiple bacterial maps using a single set of consumables; this significantly reduces the time and expense of map production

    Rapid whole genome optical mapping of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immune evasion and drug resistance in malaria have been linked to chromosomal recombination and gene copy number variation (CNV). These events are ideally studied using comparative genomic analyses; however in malaria these analyses are not as common or thorough as in other infectious diseases, partly due to the difficulty in sequencing and assembling complete genome drafts. Recently, whole genome optical mapping has gained wide use in support of genomic sequence assembly and comparison. Here, a rapid technique for producing whole genome optical maps of <it>Plasmodium falciparum </it>is described and the results of mapping four genomes are presented.</p> <p>Methods</p> <p>Four laboratory strains of <it>P. falciparum </it>were analysed using the Argus™ optical mapping system to produce ordered restriction fragment maps of all 14 chromosomes in each genome. <it>Plasmodium falciparum </it>DNA was isolated directly from blood culture, visualized using the Argus™ system and assembled in a manner analogous to next generation sequence assembly into maps (AssemblyViewer™, OpGen Inc.<sup>®</sup>). Full coverage maps were generated for <it>P. falciparum </it>strains 3D7, FVO, D6 and C235. A reference <it>P. falciparum in silico </it>map was created by the digestion of the genomic sequence of <it>P. falciparum </it>with the restriction enzyme AflII, for comparisons to genomic optical maps. Maps were then compared using the MapSolver™ software.</p> <p>Results</p> <p>Genomic variation was observed among the mapped strains, as well as between the map of the reference strain and the map derived from the putative sequence of that same strain. Duplications, deletions, insertions, inversions and misassemblies of sizes ranging from 3,500 base pairs up to 78,000 base pairs were observed. Many genomic events occurred in areas of known repetitive sequence or high copy number genes, including <it>var </it>gene clusters and <it>rifin </it>complexes.</p> <p>Conclusions</p> <p>This technique for optical mapping of multiple malaria genomes allows for whole genome comparison of multiple strains and can assist in identifying genetic variation and sequence contig assembly. New protocols and technology allowed us to produce high quality contigs spanning four <it>P. falciparum </it>genomes in six weeks for less than $1,000.00 per genome. This relatively low cost and quick turnaround makes the technique valuable compared to other genomic sequencing technologies for studying genetic variation in malaria.</p

    The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop ‘beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance’, October 14th 2013

    No full text
    The UK Science and Innovation Network UK-USA workshop ‘Beating the Superbugs: Hospital Microbiome Studies for tackling Antimicrobial Resistance’ was held on October 14th 2013 at the UK Department of Health, London. The workshop was designed to promote US-UK collaboration on hospital microbiome studies to add a new facet to our collective understanding of antimicrobial resistance. The assembled researchers debated the importance of the hospital microbial community in transmission of disease and as a reservoir for antimicrobial resistance genes, and discussed methodologies, hypotheses, and priorities. A number of complementary approaches were explored, although the importance of the built environment microbiome in disease transmission was not universally accepted. Current whole genome epidemiological methods are being pioneered in the UK and the benefits of moving to community analysis are not necessarily obvious to the pioneers; however, rapid progress in other areas of microbiology suggest to some researchers that hospital microbiome studies will be exceptionally fruitful even in the short term. Collaborative studies will recombine different strengths to tackle the international problems of antimicrobial resistance and hospital and healthcare associated infections

    Clinical outcomes and response to treatment of patients receiving topical treatments for pyoderma gangrenosum: a prospective cohort study

    Get PDF
    Background: pyoderma gangrenosum (PG) is an uncommon dermatosis with a limited evidence base for treatment. Objective: to estimate the effectiveness of topical therapies in the treatment of PG. Methods: prospective cohort study of UK secondary care patients with a clinical diagnosis of PG suitable for topical treatment (recruited July 2009 to June 2012). Participants received topical therapy following normal clinical practice (mainly Class I-III topical corticosteroids, tacrolimus 0.03% or 0.1%). Primary outcome: speed of healing at 6 weeks. Secondary outcomes: proportion healed by 6 months; time to healing; global assessment; inflammation; pain; quality-of-life; treatment failure and recurrence. Results: Sixty-six patients (22 to 85 years) were enrolled. Clobetasol propionate 0.05% was the most commonly prescribed therapy. Overall, 28/66 (43.8%) of ulcers healed by 6 months. Median time-to-healing was 145 days (95% CI: 96 days, ∞). Initial ulcer size was a significant predictor of time-to-healing (hazard ratio 0.94 (0.88;80 1.00); p = 0.043). Four patients (15%) had a recurrence. Limitations: No randomised comparator Conclusion: Topical therapy is potentially an effective first-line treatment for PG that avoids possible side effects associated with systemic therapy. It remains unclear whether more severe disease will respond adequately to topical therapy alone

    Mapping Statistics.

    No full text
    <p>These summary statistics list the number of molecules assembled to maps and the number of map assemblies generated during the processing of data from a single mapcard. The mixed mapcard bore DNA from both <i>Escherichia</i> and <i>Shigella</i>. The maps which were generated were circular and passed standard quality control.</p

    <i>Shigella</i> Genomes.

    No full text
    <p>Complete circularized <i>S. dysenteriae</i> genomes from mixed DNA mapcard run aligned to genome from individual run.</p

    <i>E. coli</i> Genomes.

    No full text
    <p>Complete circularized <i>E. coli</i> genome maps created as a result of a mixed DNA mapcard run aligned to an identical map from individual run.</p
    corecore