267 research outputs found

    How to improve robustness in Kohonen maps and display additional information in Factorial Analysis: application to text mining

    Full text link
    This article is an extended version of a paper presented in the WSOM'2012 conference [1]. We display a combination of factorial projections, SOM algorithm and graph techniques applied to a text mining problem. The corpus contains 8 medieval manuscripts which were used to teach arithmetic techniques to merchants. Among the techniques for Data Analysis, those used for Lexicometry (such as Factorial Analysis) highlight the discrepancies between manuscripts. The reason for this is that they focus on the deviation from the independence between words and manuscripts. Still, we also want to discover and characterize the common vocabulary among the whole corpus. Using the properties of stochastic Kohonen maps, which define neighborhood between inputs in a non-deterministic way, we highlight the words which seem to play a special role in the vocabulary. We call them fickle and use them to improve both Kohonen map robustness and significance of FCA visualization. Finally we use graph algorithmic to exploit this fickleness for classification of words

    Lexical Recount between Factor Analysis and Kohonen Map: Mathematical Vocabulary of Arithmetic in the Vernacular Language of the Late Middle Ages

    No full text
    International audienceIn this paper we present a combination of factorial projections and of SOM algorithm applied to a text mining problem. The corpus consists of 8 medieval texts which were used to teach arithmetic techniques to merchants. Classical Factorial Component Analysis (FCA) gives nice representations of the selected words in association with the texts, but the quality of the representation is poor in the center of the graphs and it is not easy to look for the successive projections to conclude. So using the nice properties of Kohonen maps, we can highlight the words which seems to play a special role in the vocabulary since they are associated with very different words from a map to another. Finally we show that combination of both representations is a powerful help to text analysis

    Ex-situ mineral carbonation: resources, process and environmental assessment (Carmex project)

    Get PDF
    This article presents the main results of the Carmex project (2009-2012), whose purpose was to review the feasibility of ex-situ mineral carbonation in terms of resource availability, performance of the aqueous mineral carbonation process and life cycle analysis criteria. This collaborative project looked at a wide range of generic issues about this CO2 mitigation option, with particular views on assessing its potential in the context of New-Caledonia. Indeed, insularity and local abundance of 'carbonatable' rocks and industrial wastes (i.e. rich in MgO, CaO, if not Fe(II)O), coupled with significant GHG emissions from first-class nickel pyrometallurgical industries, make it a potential candidate for application of ex-situ mineral carbonation. The project conducted a worldwide analysis of the potential of ex-situ mineral carbonation using a dedicated SIG-based tool. Using a variety of materials the project also reviewed a number of critical issues associated with the aqueous mineral carbonatation process itself, with promising perspectives. Finally, through life cycle analysis of the system as a whole, ex-situ mineral carbonation was compared to mainstream CSC solutions. It was concluded that the viability of this CO2 storage option is located at the level of the process itself and lies with the optimisation of its operating conditions

    Mécanismes et verrous de la carbonatation minérale du CO2 en voie aqueuse

    Get PDF
    La carbonatation minérale est une technique alternative de capture et stockage du CO2 anthropique. L'abondance des matériaux carbonatables sur terre en fait une solution à fort potentiel. En particulier, la carbonatation directe en voie aqueuse a été présentée dans la littérature comme la voie la plus intéressante d'un point de vue énergétique pour la carbonatation minérale ex-situ, à la condition que les cinétiques naturellement lentes de dissolution des silicates magnésiens en phase aqueuse puissent être accélérées de plusieurs ordres de grandeur. Cette thèse étudie en détail les verrous et mécanismes de cette réaction en présence d'additifs organiques tels que l'oxalate, connus pour leur capacité à accélérer la dissolution des silicates magnésiens. Dans un premier temps, la carbonatation en voie aqueuse sans additif d'une olivine modèle est étudiée de manière à mettre en évidence la nature des phénomènes limitants. Ensuite le travail se concentre sur l'étude du rôle de l'additif oxalate à travers des essais spécifiques et une analyse fine de la phase solide. Il est démontré que pour différentes concentrations de suspension et sous 20 bar de CO2, cet additif conduit à la formation de complexes aqueux stables du magnésium avec l'oxalate et à la précipitation de MgC2O4,2H2O (glushinskite), qui empêchent toute précipitation quantitative de magnésite. La simulation géochimique complète du système a été réalisée et a permis d'expliquer les résultats des essais par un mécanisme de dissolution à grain rétrécissant. L'extension de l'étude à un autre silicate (harzburgite) et à d'autres ligands organiques accélérateurs de la dissolution des silicates tels que le citrate et l'EDTA n'a pas non plus permis d'obtenir la formation quantitative de carbonate, à cause d'une forte complexation en phase aqueuse du Mg extrait du minerai. Ces travaux remettent en doute la perspective de développement d'un procédé industrialisable de minéralisation du CO2 en présence d'additifs organiques.Mineral carbonation is an interesting option for mitigation of anthropogenic CO2 emissions. Direct aqueous mineral carbonation has been presented by many as a promising strategy for ex-situ mineral carbonation, on the basis that organic additives such as oxalate increase the rate and extent of dissolution of magnesium silicates several folds. This thesis discusses and extends the current understanding of this process through geochemical modelling and detailed solid characterization. First, mineral carbonation is investigated in water alone, without additives, in order to understand and quantify the actual limitations of the process with specific magnesium silicate ores. Dissolution kinetics being critical with this process, the role of disodium oxalate as a dissolution accelerating agent is thoroughly examined with olivine, through dedicated experiments and comprehensive analysis of both solid and liquid phases. Under 20 bar of CO2, and irrespective of the conditions used, it is found that the formation of strong oxalate-magnesium complexes in solution and precipitation of MgC2O4,2H2O (glushinskite) impede any chance of precipitating significant amounts of magnesium carbonate. Geochemical modelling permits successful simulation of the dissolution kinetics of magnesium silicate using a shrinking particle model. Other promising ligands from a dissolution perspective, namely citrate and EDTA, were also investigated. Contrary to oxalate, these do not form any solid by-products with magnesium, and yet they do not produce better carbonation results. The results and findings from this work cast strong doubts about the possibility of developing a viable direct aqueous mineral carbonation process using organic salts.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Stable and bicistronic expression of two genes in somite- and lateral plate- derived tissues to study chick limb development

    Get PDF
    Background Components of the limb musculoskeletal system have distinct mesoderm origins. Limb skeletal muscles originate from somites, while the skeleton and attachments (tendons and connective tissues) derive from limb lateral plate. Despite distinct mesoderm origins, the development of muscle, skeleton and attachments is highly coordinated both spatially and temporally to ensure complete function of the musculoskeletal system. A system to study molecular interactions between somitic-derived tissues (muscles) and lateral- plate-derived tissues (skeletal components and attachments) during limb development is missing. Results We designed a gene delivery system in chick embryos with the ultimate aim to study the interactions between the components of the musculoskeletal system during limb development. We combined the Tol2 genomic integration system with the viral T2A system and developed new vectors that lead to stable and bicistronic expression of two proteins at comparable levels in chick cells. Combined with limb somite and lateral plate electroporation techniques, two fluorescent reporter proteins were co- expressed in stoichiometric proportion in the muscle lineage (somitic-derived) or in skeleton and their attachments (lateral-plate-derived). In addition, we designed three vectors with different promoters to target muscle cells at different steps of the differentiation process. Conclusion Limb somite electroporation technique using vectors containing these different promoters allowed us to target all myogenic cells, myoblasts or differentiated muscle cells. These stable and promoter-specific vectors lead to bicistronic expression either in somitic-derived myogenic cells or lateral plate-derived cells, depending on the electroporation sites and open new avenues to study the interactions between myogenic cells and tendon or connective tissue cells during limb development

    Responses to \u3ci\u3eVarroa destructor\u3c/i\u3e and \u3ci\u3eNosema ceranae\u3c/i\u3e by several commercial strains of Australian and North American honeybees (Hymenoptera: Apidae)

    Get PDF
    The potential impact of varroa (Varroa destructor, Anderson & Trueman) on Australian beekeeping and agriculture depends in part on the levels of resistance to this parasite expressed by Australian commercial honeybees (Apis mellifera). The responses of seven lines of Australian honeybees to V. destructor were compared with the responses of a stock of Italian honeybees from the United States known for its susceptibility to V. destructor and two stocks known for their resistance to V. destructor, Russian honeybees (RHB) and a stock expressing the varroa sensitive hygiene trait (VSH). The experiment began in May with uniform colonies having uniform infestation of V. destructor. V. destructor infestations measured as the percentage of adult bees infested in the Australian lines and the Italian stock rose from less than 10% in August to over 25% in October. From August to November, 44% of both the Australian and Italian colonies died while strongly exhibiting symptoms of parasitic mite syndrome. In contrast, RHB and VSH colonies displayed comparative resistance to V. destructor. Their infestation rates rose from about 5% in August to 10% (RHB) and 14% (VSH) in October. Likely, some of this increase resulted from invasion pressure by mites from the dying Australian and Italian colonies. During the August to November period, 4.4% of the RHB and 14.3% of the VSH colonies died. In comparisons of the seven Australian lines, only non-significant and trivial differences were found for infestation and mortality rates. All Australian lines were highly susceptible to V. destructor. Additionally, evaluations of rates of Nosema ceranae infections were made throughout the course of the experiment. Although high levels of infection were found across all stocks and lines, no stock or line exhibited an adverse effect from N. ceranae infection

    Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation

    Get PDF
    Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications

    About the foundations of direct aqueous carbonation with dissolution enhancing organic salts

    Get PDF
    Direct aqueous carbonation is a promising mineral carbonation route. Under mildly acidic conditions, this single-step carbonation process aims to simultaneously dissolve Ca/Mg-bearing silicates or wastes and precipitate Ca/Mg carbonates. By and large, since mineral dissolution is rate limiting due to the lack of protons at near-neutral pH, research has mainly been concerned with the issue of enhancing dissolution. By analysing the liquid phase, it has been established that polyacid organic salts can significantly enhance silicate dissolution under such unfavourable conditions. Comparatively little attention has been paid to the investigation of the very basis of the whole process, i.e. the concomitance of silicate dissolution and carbonate precipitation. By taking a close look at the solid phases in lizardite and olivine slurries, this work confirms the co-occurrence of magnesium silicate dissolution and magnesite precipitation inside a stirred reactor operating at 120°C, 20 bar of CO2 and 0.1M disodium oxalate, thereby bringing indisputable evidence that supports the foundation of direct aqueous carbonation with organic salts

    Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives.

    Get PDF
    Direct aqueous mineral carbonation using organic anions has been presented by many as a promising strategy for mineral carbonation, on the basis that additives such as oxalate increase the rate and extent of dissolution of magnesium silicates several folds. Through geochemical modelling and detailed solid characterization, this paper discusses and extends our current understanding of this process. The role of disodium oxalate as a dissolution enhancing agent for olivine is thoroughly examined through experiments in which all phases are carefully analysed. We show that under 20 bar of CO2 pressure formation of strong oxalate-magnesium complexes in solution and precipitation of MgC2O4,2H2O (glushinskite) impede any chance of obtaining significant amounts of magnesium carbonate. Other promising ligands from a dissolution perspective, namely citrate and EDTA salts, are also investigated. Contrary to oxalate, these ligands do not form any solid by-products with magnesium, and yet they do not produce better carbonation results, thereby casting strong doubts on the possibility of developing a direct aqueous mineral carbonation process using organic salts. Geochemical modelling permits successful simulation of the dissolution kinetics of magnesium silicate using a shrinking particle model that accounts for the precipitation of glushinskite, amorphous silica and a magnesium phyllosilicate at advanced stages of the dissolution process
    • …
    corecore