9 research outputs found

    Photometry and Polarimetry of 2010 XC15_{15}: Observational Confirmation of E-type Near-Earth Asteroid Pair

    Full text link
    Asteroid systems such as binaries and pairs are indicative of physical properties and dynamical histories of the Small Solar System Bodies. Although numerous observational and theoretical studies have been carried out, the formation mechanism of asteroid pairs is still unclear, especially for near-Earth asteroid (NEA) pairs. We conducted a series of optical photometric and polarimetric observations of a small NEA 2010 XC15_{15} in 2022 December to investigate its surface properties. The rotation period of 2010 XC15_{15} is possibly a few to several dozen hours and color indices of 2010 XC15_{15} are derived as gr=0.435±0.008g-r=0.435\pm0.008, ri=0.158±0.017r-i=0.158\pm0.017, and rz=0.186±0.009r-z=0.186\pm0.009 in the Pan-STARRS system. The linear polarization degrees of 2010 XC15_{15} are a few percent at the phase angle range of 58^{\circ} to 114^{\circ}. We found that 2010 XC15_{15} is a rare E-type NEA on the basis of its photometric and polarimetric properties. Taking the similarity of not only physical properties but also dynamical integrals and the rarity of E-type NEAs into account, we suppose that 2010 XC15_{15} and 1998 WT24_{24} are of common origin (i.e., asteroid pair). These two NEAs are the sixth NEA pair and first E-type NEA pair ever confirmed, possibly formed by rotational fission. We conjecture that the parent body of 2010 XC15_{15} and 1998 WT24_{24} was transported from the main-belt through the ν6\nu_6 resonance or Hungaria region.Comment: Resubmitted to AAS Journals. Any comments are welcom

    Video Observations of Tiny Near-Earth Objects with Tomo-e Gozen

    Full text link
    We report the results of video observations of tiny (diameter less than 100 m) near-Earth objects (NEOs) with Tomo-e Gozen on the Kiso 105 cm Schmidt telescope. A rotational period of a tiny asteroid reflects its dynamical history and physical properties since smaller objects are sensitive to the YORP effect. We carried out video observations of 60 tiny NEOs at 2 fps from 2018 to 2021 and successfully derived the rotational periods and axial ratios of 32 NEOs including 13 fast rotators with rotational periods less than 60 s. The fastest rotator found during our survey is 2020 HS7 with a rotational period of 2.99 s. We statistically confirmed that there is a certain number of tiny fast rotators in the NEO population, which have been missed with any previous surveys. We have discovered that the distribution of the tiny NEOs in a diameter and rotational period (D-P) diagram is truncated around a period of 10 s. The truncation with a flat-top shape is not explained well either by a realistic tensile strength of NEOs or suppression of YORP by meteoroid impacts. We propose that the dependence of the tangential YORP effect on the rotational period potentially explains the observed pattern in the D-P diagram.Comment: This article is published in PASJ as open access, published by OUP (https://doi.org/10.1093/pasj/psac043). 27 pages, 16 figure

    Discovery of the Fastest Early Optical Emission from Overluminous SN Ia 2020hvf: A Thermonuclear Explosion within a Dense Circumstellar Environment

    Get PDF
    Ia型超新星の爆発直後の閃光を捉えることに成功 --特異な爆発に至る恒星進化の謎に迫る--. 京都大学プレスリリース. 2021-12-10.In this Letter we report a discovery of a prominent flash of a peculiar overluminous Type Ia supernova, SN 2020hvf, in about 5 hr of the supernova explosion by the first wide-field mosaic CMOS sensor imager, the Tomo-e Gozen Camera. The fast evolution of the early flash was captured by intensive intranight observations via the Tomo-e Gozen high-cadence survey. Numerical simulations show that such a prominent and fast early emission is most likely generated from an interaction between 0.01 M⊙ circumstellar material (CSM) extending to a distance of ∼10¹³ cm and supernova ejecta soon after the explosion, indicating a confined dense CSM formation at the final evolution stage of the progenitor of SN 2020hvf. Based on the CSM–ejecta interaction-induced early flash, the overluminous light curve, and the high ejecta velocity of SN 2020hvf, we suggest that the SN 2020hvf may originate from a thermonuclear explosion of a super-Chandrasekhar-mass white dwarf (“super-MCh WD”). Systematical investigations on explosion mechanisms and hydrodynamic simulations of the super-MCh WD explosion are required to further test the suggested scenario and understand the progenitor of this peculiar supernova

    Photometry and Polarimetry of 2010 XC15: Observational Confirmation of E-type Near-Earth Asteroid Pair

    No full text
    Asteroid systems such as binaries and pairs are indicative of the physical properties and dynamical histories of small solar system bodies. Although numerous observational and theoretical studies have been carried out, the formation mechanism of asteroid pairs is still unclear, especially for near-Earth asteroid (NEA) pairs. We conducted a series of optical photometric and polarimetric observations of a small NEA 2010 XC _15 in 2022 December to investigate its surface properties. The rotation period of 2010 XC _15 is possibly a few to several dozen hours and the color indices of 2010 XC _15 are derived as g − r = 0.435 ± 0.008, r − i = 0.158 ± 0.017, and r − z = 0.186 ± 0.009 in the Pan-STARRS system. The linear polarization degrees of 2010 XC _15 are a few percent at the phase angle range of 58°–114°. We found that 2010 XC _15 is a rare E-type NEA on the basis of its photometric and polarimetric properties. Taking the similarity of not only physical properties but also dynamical integrals and the rarity of E-type NEAs into account, we suppose that 2010 XC _15 and 1998 WT _24 are of common origin (i.e., an asteroid pair). These two NEAs are the sixth NEA pair and first E-type NEA pair ever confirmed, possibly formed by rotational fission. We conjecture that the parent body of 2010 XC _15 and 1998 WT _24 was transported from the main belt through the ν _6 resonance or Hungaria region

    The changing rotation period of 3200 Phaethon

    No full text
    International audience3200 Phaethon is one of the largest potentially hazardous asteroids. It is also the first asteroid to be discovered in spacecraft images, the parent body of the Geminid meteor stream, and the target of JAXA's upcoming DESTINY+ mission. We have developed a physical model of Phaethon's shape and rotation state, using radar data from Arecibo and Goldstone in 2007 and 2017, stellar occultations from 2019 through 2021, and lightcurves from many apparitions (from 1989 through 2021). Phaethon has a volume-equivalent diameter of about 5.3 kilometers. It is approximately spheroidal with an equatorial ridge, resembling the shapes of 101955 Bennu and 162173 Ryugu. The earliest available lightcurve of Phaethon is from 1989 October 9 (published in Wisniewski et al. 1997). Hanuš et al. (2016) noticed that their shape model's rotation phase differed from that 1989 observation by about 20 minutes. They noted that this may be from Phaethon's rotation period changing due to activity, but they could not say whether this was real or just a timing error in that one lightcurve, since the next lightcurves are from 1994. A model with a constant rotation period provided a good fit to all of the data from 1994 through 2020. However, this model could not adequately fit the lightcurves that were acquired from four different observatories in 2021. There was a difference of about 15 minutes between the predicted and observed rotation phases — clearly greater than what the observations' uncertainties could permit. We initially considered that Phaethon's rotation period may have changed before the 2021 observations, perhaps due to activity when it was near perihelion in December 2020. However, we found that a constant rotational acceleration provides a good fit to all of the data from 1989 through 2021, clearly accounting for the discrepancies seen in 1989 and 2021 while also slightly improving the model's agreement with the data during other apparitions. We find that Phaethon's sidereal rotation period in December 2017 was 3.603944 hours. Its spin rate is increasing at a rate of 2.1×10-6 deg/day2, which corresponds to its rotation period decreasing by about 4 milliseconds per year

    The changing rotation period of 3200 Phaethon

    No full text
    International audience3200 Phaethon is one of the largest potentially hazardous asteroids. It is also the first asteroid to be discovered in spacecraft images, the parent body of the Geminid meteor stream, and the target of JAXA's upcoming DESTINY+ mission. We have developed a physical model of Phaethon's shape and rotation state, using radar data from Arecibo and Goldstone in 2007 and 2017, stellar occultations from 2019 through 2021, and lightcurves from many apparitions (from 1989 through 2021). Phaethon has a volume-equivalent diameter of about 5.3 kilometers. It is approximately spheroidal with an equatorial ridge, resembling the shapes of 101955 Bennu and 162173 Ryugu. The earliest available lightcurve of Phaethon is from 1989 October 9 (published in Wisniewski et al. 1997). Hanuš et al. (2016) noticed that their shape model's rotation phase differed from that 1989 observation by about 20 minutes. They noted that this may be from Phaethon's rotation period changing due to activity, but they could not say whether this was real or just a timing error in that one lightcurve, since the next lightcurves are from 1994. A model with a constant rotation period provided a good fit to all of the data from 1994 through 2020. However, this model could not adequately fit the lightcurves that were acquired from four different observatories in 2021. There was a difference of about 15 minutes between the predicted and observed rotation phases — clearly greater than what the observations' uncertainties could permit. We initially considered that Phaethon's rotation period may have changed before the 2021 observations, perhaps due to activity when it was near perihelion in December 2020. However, we found that a constant rotational acceleration provides a good fit to all of the data from 1989 through 2021, clearly accounting for the discrepancies seen in 1989 and 2021 while also slightly improving the model's agreement with the data during other apparitions. We find that Phaethon's sidereal rotation period in December 2017 was 3.603944 hours. Its spin rate is increasing at a rate of 2.1×10-6 deg/day2, which corresponds to its rotation period decreasing by about 4 milliseconds per year
    corecore