25 research outputs found

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate

    Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run

    Get PDF
    We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; 2) how the interpretation of individual high-mass events would change if they were found to be lensed; 3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and 4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses

    Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO-Virgo's Third Observing Run

    Get PDF
    We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses

    Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910

    No full text

    Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB during the LIGO–Virgo Observing Run O3a

    No full text

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data

    Get PDF
    International audienceWe present a directed search for continuous gravitational wave (CW) signals emitted by spinningneutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presenceof a numerous population of neutron stars has been reported in the literature, turning this region into a veryinteresting place to look for CWs. In this search, data from the full O3 LIGO-Virgo run in the detectorfrequency band [10, 2000] Hz have been used. No significant detection was found and 95% confidencelevel upper limits on the signal strain amplitude were computed, over the full search band, with the deepestlimit of about 7.6×10267.6 \times 10^{-26} at ≃142 Hz. These results are significantly more constraining than those reportedin previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity andr-mode amplitude. These limits can be also translated into constraints in the black hole mass–boson massplane for a hypothetical population of boson clouds around spinning black holes located in the GC

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    No full text
    corecore