35 research outputs found

    Implications from precision surgical anatomy for modern craniofacial pediatrics

    Get PDF
    Orofacial cleft is the most common craniofacial birth anomaly. The comprehensive care of patients with craniofacial anomalies requires a multidisciplinary approach, beginning with prenatal counseling and continuing throughout life. After birth, presurgical treatments aim to correct the imbalance of forces caused by the cleft. Surgery for cleft repair is usually performed in multiple stages, with cleft lip repair performed first, followed by cleft palate repair. However, several single-stage repair techniques have been developed. This approach involves simultaneous cleft lip and palate repair, thereby reducing the need for additional surgeries. The University Center for Cleft Lip and Palate and Craniofacial Anomalies in Basel has a long-standing history of simultaneous cleft lip and palate repair. However, conducting evidence-based studies on cleft surgery is challenging due to the rarity and variability of the malformation and the many treatment concepts. As cleft surgery undergoes continuous refinement based on outcome assessment and latest evidence, the primary aim of this PhD project was to quantify the impact on craniofacial growth of simultaneous unilateral cleft lip and palate repair. The study discussed in section 4 compared two cohorts, one with and one without primary alveolar bone grafting, and evaluated craniofacial growth, dental arch relationship, and palatal morphology. Results showed that omitting primary alveolar bone grafting did not improve craniofacial growth outcomes at the patients’ age of 6-11 years, suggesting that other surgical aspects may have a greater impact on craniofacial growth. The second study, discussed in section 5, aimed to add new evidence for a better understanding of the curved vomerine mucosa in cleft repair. The curved vomer, a key region in unilateral cleft lip and palate, has been a subject of surgical controversy with sparse evidence. The study examined for the first time the histology of curved vomerine mucosa samples and found that they did not exhibit any specific signs of nasal mucosa. This suggests that the use of vomerine mucosa in cleft repair should not be based on fixed physiological beliefs and calls for a rethinking of the anatomy and paved the way for new surgical techniques in this region. The third study, presented in section 6, assessed a new surgical technique, developed on the findings from section 5 and based on pure anatomic rearrangement of curved vomerine tissue for cleft palate closure. By this, a simultaneous continuous circular two-layer closure of unilateral cleft lip and palate has been achieved. The study assessed the safety, wound healing, and cleft width changes with presurgical passive plate therapy in patients undergoing this new surgical method. This study comprehensively demonstrates the potential of a simultaneous continuous circular closure technique for unilateral cleft lip and palate. However, further research is needed to evaluate long-term outcomes. Overall, this PhD project aimed to contribute to the understanding and improvement of cleft surgery and outcomes in simultaneous cleft lip and palate repair

    Three-Dimensional Morphological Changes of the True Cleft under Passive Presurgical Orthopaedics in Unilateral Cleft Lip and Palate: A Retrospective Cohort Study

    Get PDF
    The aim of this cohort study was to quantify the morphological changes in the palatal cleft and true cleft areas with passive plate therapy using a new analysis method based on three-dimensional standardized reproducible landmarks. Forty-five casts of 15 consecutive patients with complete unilateral cleft lip and palate were laser scanned and investigated retrospectively. The landmarks and the coordinate system were defined, and the interrater and intrarater measurement errors were within 1.0 mm. The morphological changes of the cleft palate area after a period of 8 months of passive plate therapy without prior lip surgery are presented graphically. The median decrease in cleft width was 38.0% for the palatal cleft, whereas it was 44.5% for the true cleft. The width of the true and palatal cleft decreased significantly over a period of 8 months. The true cleft area decreased by 34.7% from a median of 185.4 mm2 (interquartile range, IQR = 151.5ĂąEuro"220.1) to 121.1 mm2 (IQR = 100.2ĂąEuro"144.6). The palatal cleft area decreased by 31.5% from a median of 334 mm2 (IQR = 294.9ĂąEuro"349.8) to 228.8 mm2. The most important clinical considerations are the reproducibility and reliability of the anatomical points, as well as the associated morphological changes. We propose using the vomer edge to establish a validated measuring method for the width, area, and height of the true cleft

    JPCam: A 1.2Gpixel camera for the J-PAS survey

    Full text link
    JPCam is a 14-CCD mosaic camera, using the new e2v 9k-by-9k 10microm-pixel 16-channel detectors, to be deployed on a dedicated 2.55m wide-field telescope at the OAJ (Observatorio Astrofisico de Javalambre) in Aragon, Spain. The camera is designed to perform a Baryon Acoustic Oscillations (BAO) survey of the northern sky. The J-PAS survey strategy will use 54 relatively narrow-band (~13.8nm) filters equi-spaced between 370 and 920nm plus 3 broad-band filters to achieve unprecedented photometric red-shift accuracies for faint galaxies over ~8000 square degrees of sky. The cryostat, detector mosaic and read electronics is being supplied by e2v under contract to J-PAS while the mechanical structure, housing the shutter and filter assembly, is being designed and constructed by a Brazilian consortium led by INPE (Instituto Nacional de Pesquisas Espaciais). Four sets of 14 filters are placed in the ambient environment, just above the dewar window but directly in line with the detectors, leading to a mosaic having ~10mm gaps between each CCD. The massive 500mm aperture shutter is expected to be supplied by the Argelander-Institut fur Astronomie, Bonn. We will present an overview of JPCam, from the filter configuration through to the CCD mosaic camera. A brief outline of the main J-PAS science projects will be included.Comment: 11 pages and 9 figure

    The miniJPAS survey: Identification and characterization of the emission line galaxies down to z<0.35z < 0.35 in the AEGIS field

    Get PDF
    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is expected to map thousands of square degrees of the northern sky with 56 narrowband filters in the upcoming years. This will make J-PAS a very competitive and unbiased emission line survey compared to spectroscopic or narrowband surveys with fewer filters. The miniJPAS survey covered 1 deg2^2, and it used the same photometric system as J-PAS, but the observations were carried out with the pathfinder J-PAS camera. In this work, we identify and characterize the sample of emission line galaxies (ELGs) from miniJPAS with a redshift lower than 0.350.35. Using a method based on artificial neural networks, we detect the ELG population and measure the equivalent width and flux of the HαH\alpha, HÎČH\beta, [OIII], and [NII] emission lines. We explore the ionization mechanism using the diagrams [OIII]/HÎČ\beta versus [NII]/Hα\alpha (BPT) and EW(Hα\alpha) versus [NII]/Hα\alpha (WHAN). We identify 1787 ELGs (8383%) from the parent sample (2154 galaxies) in the AEGIS field. For the galaxies with reliable EW values that can be placed in the WHAN diagram (2000 galaxies in total), we obtained that 72.8±0.472.8 \pm 0.4%, 17.7±0.417.7 \pm 0.4% , and 9.4±0.29.4 \pm 0.2% are star-forming (SF), active galactic nucleus (Seyfert), and quiescent galaxies, respectively. Based on the flux of HαH\alpha we find that the star formation main sequence is described as log⁥\log SFR [M⊙yr−1]=0.90−0.02+0.02log⁥M⋆[M⊙]−8.85−0.20+0.19[M_\mathrm{\odot} \mathrm{yr}^{-1}] = 0.90^{+ 0.02}_{-0.02} \log M_{\star} [M_\mathrm{\odot}] -8.85^{+ 0.19}_{-0.20} and has an intrinsic scatter of 0.20−0.01+0.010.20^{+ 0.01}_{-0.01}. The cosmic evolution of the SFR density (ρSFR\rho_{\text{SFR}}) is derived at three redshift bins: 0<z≀0.150 < z \leq 0.15, 0.15<z≀0.250.15 < z \leq 0.25, and 0.25<z≀0.350.25 < z \leq 0.35, which agrees with previous results that were based on measurements of the HαH\alpha emission line.Comment: 22 pages, 19 figure

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process

    Get PDF
    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus

    Load Transfer during Magnetic Mucoperiosteal Distraction in Newborns with Complete Unilateral and Bilateral Orofacial Clefts: A Three-Dimensional Finite Element Analysis

    Get PDF
    The primary correction of congenital complete unilateral cleft lip and palate (UCLP) and bilateral cleft lip and palate (BCLP) is challenging due to inherent lack of palatal tissue and small extent of the palatal shelves at birth. The tissue deficiency affects the nasal mucosa, maxillary bone and palatal mucosa. This condition has driven the evolution of several surgical and non-surgical techniques for mitigating the inherent problem of anatomical deficits. These techniques share the common principle of altering the neighboring tissues around the defect area in order to form a functional seal between the oral and nasal cavity. However, there is currently no option for rectifying the tissue deficiency itself. Investigations have repeatedly shown that despite the structural tissue deficiency of the cleft, craniofacial growth proceeds normal if the clefts remain untreated, but the cleft remains wide. Conversely, craniofacial growth is reduced after surgical repair and the related alteration of the tissues. Therefore, numerous attempts have been made to change the surgical technique and timing so as to reduce the effects of surgical repairs on craniofacial growth, but they have been only minimally effective so far. We have determined whether the intrinsic structural soft and hard tissue deficiency can be ameliorated before surgical repair using the principles of periosteal distraction by means of magnetic traction. Two three-dimensional maxillary finite element models, with cleft patterns of UCLP and BCLP, respectively, were created from computed tomography slice data using dedicated image analysis software. A virtual dental magnet was positioned on either side of the cleft at the mucoperiosteal borders, and an incremental magnetic attraction force of up to 5 N was applied to simulate periosteal distraction. The stresses and strains in the periosteal tissue induced by the magnet were calculated using finite element analysis. For a 1 N attraction force the maximum strains did not exceed 1500 ”strain suggesting that adaptive remodeling will not take place for attraction forces lower than 1 N. At 5 N the regions subject to remodeling differed between the UCLP and BCLP models. Stresses and strains at the periosteum of the palatal shelf ridges in the absence of compressive forces at the alveolar borders were greater in the UCLP model than the BCLP model. The findings suggest that in newborns with UCLP and BCLP, periosteal distraction by means of a magnetic 5 N attraction force can promote the generation of soft and hard tissues along the cleft edges and rectify the tissue deficiency associated with the malformation
    corecore