13 research outputs found

    Humoral immune response to SARS-CoV-2 vaccination after a booster vaccine dose in two kidney transplant recipients with fabry disease and variable secondary immunosuppressive regimens

    No full text
    International audienceThe urgent need to fight the COVID-19 pandemic has accelerated the development of vaccines against SARS-CoV-2 and approval processes. Initial analysis of two-dose regimens with mRNA vaccines reported up to 95% efficacy against the original strain of the SARS-CoV-2 virus. Challenges arose with the appearance of new strains of the virus, and reports that solid organ transplant recipients may have reduced vaccination success rates after a two-dose mRNA vaccination regimen encouraged health authorities to recommend a booster in immunocompromised patients. Fabry disease is an X-linked inherited lysosomal disorder, which may lead to chronic end-stage renal disease. We report on two patients with advanced Fabry disease, renal graft and adjunctive immuno-suppressive therapies who exhibited variable humoral vaccination-related immune responses against SARS-CoV-2 after three vaccine doses. The first patient developed mild COVID-19 infection, while the second patient did not seroconvert after three shots of an mRNA vaccine. Both cases empha-size that patients with Fabry disease and renal graft are susceptible to develop a weak response to COVID-19 vaccination and highlight the importance of maintaining barrier protection measures. Vaccination of family members should be encouraged to lower the risk of viral transmission to immunocompromised, transplanted patients, including vaccinated ones

    High Reproducibility of ELISPOT Counts from Nine Different Laboratories

    No full text
    The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators

    The Tumor Antigen Cyclin B1 Hosts Multiple CD4 T Cell Epitopes Differently Recognized by Pre-Existing Naive and Memory Cells in Both Healthy and Cancer Donors

    No full text
    International audienceCyclin B1 (CCNB1) is considered as a potential target for a cancer vaccine, as it is overexpressed in many malignant cells, while being transiently expressed in normal cells. To evaluate the CD4 T cell response to CCNB1, we derived T cell lines by multiple weekly rounds of stimulation with recombinant CCNB1 of T cells collected in healthy donors (long-term T cell assays). T cell lines were specific for 15 immunodominant peptides and derived preferentially from naive T cells. From 74 overlapping peptides, 20 peptides were selected for their broad specificity of binding to HLA class II molecules and included most of the immunodominant epitopes. They primed in vitro a large number of specific CD4 T cell lines in all the donors. Immunodominant epitopes were the most efficacious in long-term T cell assays, both in terms of number of specific T cell lines and number of responding donors. The 20 peptides were also submitted to short-term T cell assays using cells collected in healthy and cancer patients with the aim to evaluate the memory response. The recognized peptides differed from the immunodominant peptides and were part of the best promiscuous peptides. We also observed pre-existing CCNB1-specifc IgG Abs in both healthy and cancer donors. Long-and short-term T cell assays revealed that CCNB1 contained many CD4 T cell epitopes, which are differentially recognized by pre-existing naive and memory CD4 T cells. These observations are of value for the design of cancer vaccines

    Analysis of spontaneous tumor-specific CD4 T-cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: potential synergistic effect with chemotherapy response.

    No full text
    International audiencePURPOSE: To investigate the presence and impact of spontaneous telomerase-specific CD4 T-cell responses in cancer patients. EXPERIMENTAL DESIGN: A multistep approach was used to design novel pan-HLA-DR-restricted peptides from telomerase. T-cell clones isolated from cancer patients were used to characterize the polarization of telomerase-specific CD4 response. The presence of spontaneous CD4 T-cell response against telomerase was monitored in 84 metastatic non-small cell lung cancer (NSCLC) patients before first-line chemotherapy (CT) using IFN-γ ELISPOT assay. Then we analyzed the impact of the pretherapeutic telomerase-specific CD4 T immunity on clinical outcome in patients according to their respective response to CT. RESULTS: We described four novel telomerase-derived CD4 epitopes referred as universal cancer peptides (UCP) that effectively bind to most commonly found human MHC class II alleles. UCP-specific CD4 T-cell repertoire is present in human and UCP-specific CD4 T-cell clones generated from cancer patients exhibited high avidity and are Th1 polarized. Significant frequency (38%) of naturally occurring UCP-specific T-cell responses were detected before CT in advanced NSCLC but not in healthy volunteers. This response was shown to significantly increase overall survival (OS) of patients responding to CT (Median OS: 53 vs. 40 weeks, P = 0.034). CONCLUSIONS: These results show for the first time a potential synergistic effect of telomerase-specific CD4 T-cell response with CT response in NSCLC and underline the potential role of tumor-specific CD4 T-cell response on the efficiency of conventional anticancer therapy

    Targeting HGF/c-Met Axis Decreases Circulating Regulatory T Cells Accumulation in Gastric Cancer Patients

    No full text
    International audienceElucidating mechanisms involved in tumor-induced immunosuppression is of great interest since it could help to improve cancer immunotherapy efficacy. Here we show that Hepatocyte Growth Factor (HGF), a pro-tumoral and proangiogenic factor, and its receptor c-Met are involved in regulatory T cells (Treg) accumulation in the peripheral blood of gastric cancer (GC) patients. We observed that c-Met is expressed on circulating monocytes from GC patients. The elevated expression on monocytes is associated with clinical parameters linked to an aggressive disease phenotype and correlates with a worse prognosis. Monocyte-derived dendritic cells from GC patients differentiated in the presence of HGF adopt a regulatory phenotype with a lower expression of co-stimulatory molecules, impaired maturation capacities, and an increased ability to produce interleukin-10 and to induce Treg differentiation in vitro. In the MEGA-ACCORD20-PRODIGE17 trial, GC patients received an anti-HGF antibody treatment (rilotumumab), which had been described to have an antiangiogenic activity by decreasing proliferation of endothelial cells and tube formation. Rilotumumab decreased circulating Treg in GC patients. Thus, we identified that HGF indirectly triggers Treg accumulation via c-Met-expressing monocytes in the peripheral blood of GC patients. Our study provides arguments for potential alternative use of HGF/c-Met targeted therapies based on their immunomodulatory properties which could lead to the development of new therapeutic associations in cancer patients, for example with immune checkpoint inhibitors

    CXCR6 deficiency impairs cancer vaccine efficacy and CD8 + resident memory T-cell recruitment in head and neck and lung tumors

    No full text
    International audienceBackground Resident memory T lymphocytes (TRM) are located in tissues and play an important role in immunosurveillance against tumors. The presence of TRM prior to treatment or their induction is associated to the response to anti-Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1) immunotherapy and the efficacy of cancer vaccines. Previous work by our group and others has shown that the intranasal route of vaccination allows more efficient induction of these cells in head and neck and lung mucosa, resulting in better tumor protection. The mechanisms of in vivo migration of these cells remains largely unknown, apart from the fact that they express the chemokine receptor CXCR6.Methods We used CXCR6-deficient mice and an intranasal tumor vaccination model targeting the Human Papillomavirus (HPV) E7 protein expressed by the TC-1 lung cancer epithelial cell line. The role of CXCR6 and its ligand, CXCL16, was analyzed using multiparametric cytometric techniques and Luminex assays.Human biopsies obtained from patients with lung cancer were also included in this study.Results We showed that CXCR6 was preferentially expressed by CD8+ TRM after vaccination in mice and also on intratumoral CD8+ TRM derived from human lung cancer. We also demonstrate that vaccination of Cxcr6-deficient mice induces a defect in the lung recruitment of antigen-specific CD8+ T cells, preferentially in the TRM subsets. In addition, we found that intranasal vaccination with a cancer vaccine is less effective in these Cxcr6-deficient mice compared with wild-type mice, and this loss of efficacy is associated with decreased recruitment of local antitumor CD8+ TRM. Interestingly, intranasal, but not intramuscular vaccination induced higher and more sustained concentrations of CXCL16, compared with other chemokines, in the bronchoalveolar lavage fluid and pulmonary parenchyma.Conclusions This work demonstrates the in vivo role of CXCR6-CXCL16 axis in the migration of CD8+ resident memory T cells in lung mucosa after vaccination, resulting in the control of tumor growth. This work reinforces and explains why the intranasal route of vaccination is the most appropriate strategy for inducing these cells in the head and neck and pulmonary mucosa, which remains a major objective to overcome resistance to anti-PD-1/PD-L1, especially in cold tumors

    Decrease of Pro-Angiogenic Monocytes Predicts Clinical Response to Anti-Angiogenic Treatment in Patients with Metastatic Renal Cell Carcinoma

    No full text
    The modulation of subpopulations of pro-angiogenic monocytes (VEGFR-1+CD14 and Tie2+CD14) was analyzed in an ancillary study from the prospective PazopanIb versus Sunitinib patient preferenCE Study (PISCES) (NCT01064310), where metastatic renal cell carcinoma (mRCC) patients were treated with two anti-angiogenic drugs, either sunitinib or pazopanib. Blood samples from 86 patients were collected prospectively at baseline (T1), and at 10 weeks (T2) and 20 weeks (T3) after starting anti-angiogenic therapy. Various subpopulations of myeloid cells (monocytes, VEGFR-1+CD14 and Tie2+CD14 cells) decreased during treatment. When patients were divided into two subgroups with a decrease (defined as a >20% reduction from baseline value) (group 1) or not (group 2) at T3 for VEGFR-1+CD14 cells, group 1 patients presented a median PFS and OS of 24 months and 37 months, respectively, compared with a median PFS of 9 months (p = 0.032) and a median OS of 16 months (p = 0.033) in group 2 patients. The reduction in Tie2+CD14 at T3 predicted a benefit in OS at 18 months after therapy (p = 0.04). In conclusion, in this prospective clinical trial, a significant decrease in subpopulations of pro-angiogenic monocytes was associated with clinical response to anti-angiogenic drugs in patients with mRCC

    Plasma CD27, a Surrogate of the Intratumoral CD27–CD70 Interaction, Correlates with Immunotherapy Resistance in Renal Cell Carcinoma

    No full text
    International audienceAbstract Purpose: CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27–CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear. Experimental Design: Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 in situ using multiplex immunofluorescence. CD27+ T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort). Results: In the tumor microenvironment, CD27+ T cells interacted with CD70-expressing tumor cells. Compared with CD27− T cells, CD27+ T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27–CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti–programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy. Conclusions: In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors
    corecore