1,098 research outputs found
Superhelical Duplex Destabilization and the Recombination Position Effect
The susceptibility to recombination of a plasmid inserted into a chromosome
varies with its genomic position. This recombination position effect is known to
correlate with the average G+C content of the flanking sequences. Here we
propose that this effect could be mediated by changes in the susceptibility to
superhelical duplex destabilization that would occur. We use standard
nonparametric statistical tests, regression analysis and principal component
analysis to identify statistically significant differences in the
destabilization profiles calculated for the plasmid in different contexts, and
correlate the results with their measured recombination rates. We show that the
flanking sequences significantly affect the free energy of denaturation at
specific sites interior to the plasmid. These changes correlate well with
experimentally measured variations of the recombination rates within the
plasmid. This correlation of recombination rate with superhelical
destabilization properties of the inserted plasmid DNA is stronger than that
with average G+C content of the flanking sequences. This model suggests a
possible mechanism by which flanking sequence base composition, which is not
itself a context-dependent attribute, can affect recombination rates at
positions within the plasmid
Conformations of closed DNA
We examine the conformations of a model for a short segment of closed DNA.
The molecule is represented as a cylindrically symmetric elastic rod with a
constraint corresponding to a specification of the linking number. We obtain
analytic expressions leading to the spatial configuration of a family of
solutions representing distortions that interpolate between the circular form
of DNA and a figure-eight form that represents the onset of interwinding. We
are also able to generate knotted loops. We suggest ways to use our approach to
produce other configurations relevant to studies of DNA structure. The
stability of the distorted configurations is assessed, along with the effects
of fluctuations on the free energy of the various configurations.Comment: 39 pages in REVTEX with 14 eps figures. Submitted to Phys. Rev. E.
This manuscript updates, expands and revises, to a considerable extent, a
previously posted manuscript, entitled "Conformations of Circular DNA," which
appeared as cond-mat/970104
A stitch in time: Efficient computation of genomic DNA melting bubbles
Background: It is of biological interest to make genome-wide predictions of
the locations of DNA melting bubbles using statistical mechanics models.
Computationally, this poses the challenge that a generic search through all
combinations of bubble starts and ends is quadratic.
Results: An efficient algorithm is described, which shows that the time
complexity of the task is O(NlogN) rather than quadratic. The algorithm
exploits that bubble lengths may be limited, but without a prior assumption of
a maximal bubble length. No approximations, such as windowing, have been
introduced to reduce the time complexity. More than just finding the bubbles,
the algorithm produces a stitch profile, which is a probabilistic graphical
model of bubbles and helical regions. The algorithm applies a probability peak
finding method based on a hierarchical analysis of the energy barriers in the
Poland-Scheraga model.
Conclusions: Exact and fast computation of genomic stitch profiles is thus
feasible. Sequences of several megabases have been computed, only limited by
computer memory. Possible applications are the genome-wide comparisons of
bubbles with promotors, TSS, viral integration sites, and other melting-related
regions.Comment: 16 pages, 10 figure
A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells
Glycoprotein folding is mediated by lectin-like chaperones and protein disulfide isomerases (PDIs) in the endoplasmic reticulum (ER). Calnexin and the PDI homologue ERp57 work together to help fold nascent polypeptides with glycans located toward the N-terminus of a protein, whereas PDI and BiP may engage proteins that lack glycans or have sugars toward the C-terminus. In this study, we show that the PDI homologue PDILT is expressed exclusively in post-meiotic male germ cells, in contrast to the ubiquitous expression of many other PDI family members in the testis. PDILT is induced during puberty and represents the first example of a PDI family member under developmental control. We find that PDILT is not active as an oxido-reductase, but interacts with the model peptide -somatostatin and nonnative BPTI in vitro, indicative of chaperone activity. In vivo, PDILT forms a tissue-specific chaperone complex with the calnexin homologue calmegin. The identification of a redox-inactive chaperone partnership defines a new system of testis-specific protein folding with implications for male fertility
Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs.
Ronin (THAP11), a DNA-binding protein that evolved from a primordial DNA transposon by molecular domestication, recognizes a hyperconserved promoter sequence to control developmentally and metabolically essential genes in pluripotent stem cells. However, it remains unclear whether Ronin or related THAP proteins perform similar functions in development. Here, we present evidence that Ronin functions within the nascent heart as it arises from the mesoderm and forms a four-chambered organ. We show that Ronin is vital for cardiogenesis during midgestation by controlling a set of critical genes. The activity of Ronin coincided with the recruitment of its cofactor, Hcf-1, and the elevation of H3K4me3 levels at specific target genes, suggesting the involvement of an epigenetic mechanism. On the strength of these findings, we propose that Ronin activity during cardiogenesis offers a template to understand how important gene programs are sustained across different cell types within a developing organ such as the heart
Experimental study exploring the interaction of structural and leakage dynamics
Strategies for managing leakage from water distribution systems require the ability to effectively evaluate such real losses through the understanding of the behavior of individual leaks, including their response to changes in pressure regime due to demand or management strategies. This paper presents the results from an innovative experimental investigation aimed at understanding the response of longitudinal slits in pressurized viscoelastic pipes, specifically considering the interaction between the structural and leakage dynamics. For the first time, leakage flow rate, pressure, leak area, and material strain were recorded simultaneously, providing new knowledge of the complex interaction of these factors. The paper shows that strain and area are directly related, hence it is possible to employ strain as a predictor of leak area, calculated using a calibrated viscoelastic model. Using such an approach, the leakage flow rates under a range of quasi-static pressures were accurately predicted and validated. Overall the paper demonstrates that the orifice equation, with a constant coefficient of discharge, is suitable for accurately estimating dynamic leakage flow rates from longitudinal slits, provided that the leak area is suitably incorporated
Salerno's model of DNA reanalysed: could solitons have biological significance?
We investigate the sequence-dependent behaviour of localised excitations in a
toy, nonlinear model of DNA base-pair opening originally proposed by Salerno.
Specifically we ask whether ``breather'' solitons could play a role in the
facilitated location of promoters by RNA polymerase. In an effective potential
formalism, we find excellent correlation between potential minima and {\em
Escherichia coli} promoter recognition sites in the T7 bacteriophage genome.
Evidence for a similar relationship between phage promoters and downstream
coding regions is found and alternative reasons for links between AT richness
and transcriptionally-significant sites are discussed. Consideration of the
soliton energy of translocation provides a novel dynamical picture of sliding:
steep potential gradients correspond to deterministic motion, while ``flat''
regions, corresponding to homogeneous AT or GC content, are governed by random,
thermal motion. Finally we demonstrate an interesting equivalence between
planar, breather solitons and the helical motion of a sliding protein
``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J.
Biol. Phys., accepted 02/09/0
Conformations of Linear DNA
We examine the conformations of a model for under- and overwound DNA. The
molecule is represented as a cylindrically symmetric elastic string subjected
to a stretching force and to constraints corresponding to a specification of
the link number. We derive a fundamental relation between the Euler angles that
describe the curve and the topological linking number. Analytical expressions
for the spatial configurations of the molecule in the infinite- length limit
were obtained. A unique configuraion minimizes the energy for a given set of
physical conditions. An elastic model incorporating thermal fluctuations
provides excellent agreement with experimental results on the plectonemic
transition.Comment: 5 pages, RevTeX; 6 postscript figure
A Mobile Prenatal Care App to Reduce In-Person Visits: Prospective Controlled Trial.
BACKGROUND: Risk-appropriate prenatal care has been asserted as a way for the cost-effective delivery of prenatal care. A virtual care model for prenatal care has the potential to provide patient-tailored, risk-appropriate prenatal educational content and may facilitate vital sign and weight monitoring between visits. Previous studies have demonstrated a safe reduction in the frequency of in-person prenatal care visits among low-risk patients but have noted a reduction in patient satisfaction.
OBJECTIVE: The primary objective of this study was to test the effectiveness of a mobile prenatal care app to facilitate a reduced in-person visit schedule for low-risk pregnancies while maintaining patient and provider satisfaction.
METHODS: This controlled trial compared a control group receiving usual care with an experimental group receiving usual prenatal care and using a mobile prenatal care app. The experimental group had a planned reduction in the frequency of in-person office visits, whereas the control group had the usual number of visits. The trial was conducted at 2 diverse outpatient obstetric (OB) practices that are part of a single academic center in Washington, DC, United States. Women were eligible for enrollment if they presented to care in the first trimester, were aged between 18 and 40 years, had a confirmed desired pregnancy, were not considered high-risk, and had an iOS or Android smartphone that they used regularly. We measured the effectiveness of a virtual care platform for prenatal care via the following measured outcomes: the number of in-person OB visits during pregnancy and patient satisfaction with prenatal care.
RESULTS: A total of 88 patients were enrolled in the study, 47 in the experimental group and 41 in the control group. For patients in the experimental group, the average number of in-person OB visits during pregnancy was 7.8 and the average number in the control group was 10.2 (P=.01). There was no statistical difference in patient satisfaction (P\u3e.05) or provider satisfaction (P\u3e.05) in either group.
CONCLUSIONS: The use of a mobile prenatal care app was associated with reduced in-person visits, and there was no reduction in patient or provider satisfaction.
TRIAL REGISTRATION: ClinicalTrials.gov NCT02914301; https://clinicaltrials.gov/ct2/show/NCT02914301 (Archived by WebCite at http://www.webcitation.org/76S55M517)
Dynamics of liquid 4He in Vycor
We have measured the dynamic structure factor of liquid 4He in Vycor using
neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are
observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r
energies and lifetimes at low temperature (T = 0.5 K) and their temperature
dependence are the same as in bulk liquid 4He. However, the weight of the
single p-r component does not scale with the superfluid fraction (SF) as it
does in the bulk. In particular, we observe a p-r excitation between T_c =
1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if
the p-r excitation intensity scales with the Bose condensate, that there is a
separation of the Bose-Einstein condensation temperature and the superfluid
transition temperature T_c of 4He in Vycor. We also observe a two-dimensional
layer mode near the roton wave vector. Its dispersion is consistent with
specific heat and SF measurements and with layer modes observed on graphite
surfaces.Comment: 3 pages, 4 figure
- …