3,352 research outputs found

    Microscopic Origin of Quantum Chaos in Rotational Damping

    Full text link
    The rotational spectrum of 168^{168}Yb is calculated diagonalizing different effective interactions within the basis of unperturbed rotational bands provided by the cranked shell model. A transition between order and chaos taking place in the energy region between 1 and 2 MeV above the yrast line is observed, associated with the onset of rotational damping. It can be related to the higher multipole components of the force acting among the unperturbed rotational bands.Comment: 7 pages, plain TEX, YITP/K-99

    Entanglement requirements for implementing bipartite unitary operations

    Full text link
    We prove, using a new method based on map-state duality, lower bounds on entanglement resources needed to deterministically implement a bipartite unitary using separable (SEP) operations, which include LOCC (local operations and classical communication) as a particular case. It is known that the Schmidt rank of an entangled pure state resource cannot be less than the Schmidt rank of the unitary. We prove that if these ranks are equal the resource must be uniformly (maximally) entangled: equal nonzero Schmidt coefficients. Higher rank resources can have less entanglement: we have found numerical examples of Schmidt rank 2 unitaries which can be deterministically implemented, by either SEP or LOCC, using an entangled resource of two qutrits with less than one ebit of entanglement.Comment: 7 pages Revte

    Efficient generation of random multipartite entangled states using time optimal unitary operations

    Get PDF
    We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of the gate complexity point of view used in other works. This physical time can be obtained, for a given Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum gates arise according to the optimality point of view used in each case. We also study how the convergence to random entangled states depends on different entanglement measures.Comment: 5 pages, 2 figures. New title, improved explanation of the algorithm. To appear in Phys. Rev.

    Dynamics of Atom-Field Entanglement from Exact Solutions: Towards Strong Coupling and Non-Markovian Regimes

    Full text link
    We examine the dynamics of bipartite entanglement between a two-level atom and the electromagnetic field. We treat the Jaynes-Cummings model with a single field mode and examine in detail the exact time evolution of entanglement, including cases where the atomic state is initially mixed and the atomic transition is detuned from resonance. We then explore the effects of other nearby modes by calculating the exact time evolution of entanglement in more complex systems with two, three, and five field modes. For these cases we can obtain exact solutions which include the strong coupling regimes. Finally, we consider the entanglement of a two-level atom with the infinite collection of modes present in the intracavity field of a Fabre-Perot cavity. In contrast to the usual treatment of atom-field interactions with a continuum of modes using the Born-Markov approximation, our treatment in all cases describes the full non-Markovian dynamics of the atomic subsystem. Only when an analytic expression for the infinite mode case is desired do we need to make a weak coupling assumption which at long times approximates Markovian dynamics.Comment: 12 pages, 5 figures; minor changes in grammar, wording, and formatting. One unnecessary figure removed. Figure number revised (no longer counts subfigures separately

    Does export dependency hurt economic development? Empirical evidence from Singapore

    Get PDF
    A rapid export growth in East Asia was once identified as a source of the sustainable economic development that the region enjoyed. However, the current global recession has turned exports from an economic virtue to a vice. There is a growing awareness that a heavy reliance on exports has caused a serious economic downturn in the region. The present paper chooses Singapore as a case study to examine the relationship between the origin of the East Asian Miracle (i.e. export dependency) and the economic growth. For this purpose, the study employs a causality test developed by Toda and Yamamoto. The empirical findings indicate that despite a negative long-run relationship between export dependency and economic growth, Singapore's heavy reliance on exports does not seem to have produced negative effects on the nation's economic growth. This is because the increase in export dependency was an effect, and not a cause, of the country's output expansion.

    Universal bounds for the Holevo quantity, coherent information \\ and the Jensen-Shannon divergence

    Full text link
    The Holevo quantity provides an upper bound for the mutual information between the sender of a classical message encoded in quantum carriers and the receiver. Applying the strong sub-additivity of entropy we prove that the Holevo quantity associated with an initial state and a given quantum operation represented in its Kraus form is not larger than the exchange entropy. This implies upper bounds for the coherent information and for the quantum Jensen--Shannon divergence. Restricting our attention to classical information we bound the transmission distance between any two probability distributions by the entropic distance, which is a concave function of the Hellinger distance.Comment: 5 pages, 2 figure

    Information theoretic treatment of tripartite systems and quantum channels

    Full text link
    A Holevo measure is used to discuss how much information about a given POVM on system aa is present in another system bb, and how this influences the presence or absence of information about a different POVM on aa in a third system cc. The main goal is to extend information theorems for mutually unbiased bases or general bases to arbitrary POVMs, and especially to generalize "all-or-nothing" theorems about information located in tripartite systems to the case of \emph{partial information}, in the form of quantitative inequalities. Some of the inequalities can be viewed as entropic uncertainty relations that apply in the presence of quantum side information, as in recent work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also apply to quantum channels: e.g., if \EC accurately transmits certain POVMs, the complementary channel \FC will necessarily be noisy for certain other POVMs. While the inequalities are valid for mixed states of tripartite systems, restricting to pure states leads to the basis-invariance of the difference between the information about aa contained in bb and cc.Comment: 21 pages. An earlier version of this paper attempted to prove our main uncertainty relation, Theorem 5, using the achievability of the Holevo quantity in a coding task, an approach that ultimately failed because it did not account for locking of classical correlations, e.g. see [DiVincenzo et al. PRL. 92, 067902 (2004)]. In the latest version, we use a very different approach to prove Theorem

    U-duality covariant membranes

    Full text link
    We outline a formulation of membrane dynamics in D=8 which is fully covariant under the U-duality group SL(2,Z) x SL(3,Z), and encodes all interactions to fields in the eight-dimensional supergravity, which is constructed through Kaluza-Klein reduction on T^3. Among the membrane degrees of freedom is an SL(2,R) doublet of world-volume 2-form potentials, whose quantised electric fluxes determine the membrane charges, and are conjectured to provide an interpretation of the variables occurring in the minimal representation of E_{6(6)} which appears in the context of automorphic membranes. We solve the relevant equations for the action for a restricted class of supergravity backgrounds. Some comments are made on supersymmetry and lower dimensions.Comment: LaTeX, 21 pages. v2: Minor changes in text, correction of a sign. v3: some changes in text, a sign convention changed; version to appear in JHE

    Summing free unitary random matrices

    Full text link
    I use quaternion free probability calculus - an extension of free probability to non-Hermitian matrices (which is introduced in a succinct but self-contained way) - to derive in the large-size limit the mean densities of the eigenvalues and singular values of sums of independent unitary random matrices, weighted by complex numbers. In the case of CUE summands, I write them in terms of two "master equations," which I then solve and numerically test in four specific cases. I conjecture a finite-size extension of these results, exploiting the complementary error function. I prove a central limit theorem, and its first sub-leading correction, for independent identically-distributed zero-drift unitary random matrices.Comment: 17 pages, 15 figure

    `Classical' quantum states

    Full text link
    We show that several classes of mixed quantum states in finite-dimensional Hilbert spaces which can be characterized as being, in some respect, 'most classical' can be described and analyzed in a unified way. Among the states we consider are separable states of distinguishable particles, uncorrelated states of indistinguishable fermions and bosons, as well as mixed spin states decomposable into probabilistic mixtures of pure coherent states. The latter were the subject of the recent paper by Giraud et. al., who showed that in the lowest-dimensional, nontrivial case of spin 1, each such state can be decomposed into a mixture of eight pure states. Using our method we prove that in fact four pure states always suffice.Comment: revtex, 17 page
    • 

    corecore