34 research outputs found

    Numerical study of rice-pile model

    Get PDF
    A one-dimensional model of a rice-pile is numerically studied for different driving mechanisms. We found that for a sufficiently large system, there is a sharp transition between the trivial behaviour of a 1D BTW model and self-organized critical (SOC) behaviour. Depending on the driving mechanism, the self-organized critical rice-pile model belongs to two different universality classes.A one-dimensional model of a rice-pile is numerically studied for different driving mechanisms. We found that for a sufficiently large system, there is a sharp transition between the trivial behaviour of a 1D BTW model and self-organized critical (SOC) behaviour. Depending on the driving mechanism, the self-organized critical rice-pile model belongs to two different universality classes

    Phase diagrams and magnetic behavior of films with amorphization and anisotropy in surfaces

    Get PDF
    The phase diagrams and magnetic behavior of thin films with two amorphous surfaces are investigated by the use of the effective field theory with correlations. The transition temperature dependence of the exchange integral at surfaces, coupling between surface and nearest-layers, film thickness, and structural fluctuations are studied. Some interesting phenomena can occur as wetting phenomena and compensation point.The phase diagrams and magnetic behavior of thin films with two amorphous surfaces are investigated by the use of the effective field theory with correlations. The transition temperature dependence of the exchange integral at surfaces, coupling between surface and nearest-layers, film thickness, and structural fluctuations are studied. Some interesting phenomena can occur as wetting phenomena and compensation point

    A simulation study of an asymmetric exclusion model with disorder

    Get PDF
    On the one hand, using numerical simulations, we study the asymmetric exclusion model with open boundaries, particlewise disorder. The phase diagram in the (α , β)   -plane displays high density, low density and maximum current phases, with the first order transition line between high and low density phases shifted away from the line α =β. Within the low density phase a platoon phase transition occurs, many features of which can be explained using exact results for asymmetric exclusion with particlewise disorder on the ring. In a certain region of parameter space the disorder induces a cusp in the current-density relation at maximum flow. Our simulations indicate that this does not affect the topology of the phase diagram, nor the familiar 1/Öx -decay of the density profile in the maximum current phase. On the other hand, we study the effects of defects in the road and of jumping rate ∆t on the phase diagram J−ρ, using asymmetric exclusion model with periodic boundaries. For different level of disorder, the space-time evolution of particles displays «waves» for both phases low density and high density. Besides, there exist two critical values of density, a lower critical value ρc1 and a upper critical value ρc2, in between the current is constant and reaches its maximal value Jmax which increases with increasing the jumping rate ∆t and/or the degree of disorder c. Increasing ∆t and/or c, ρc1 increases and ρc2 decreases.On the one hand, using numerical simulations, we study the asymmetric exclusion model with open boundaries, particlewise disorder. The phase diagram in the (α , β)   -plane displays high density, low density and maximum current phases, with the first order transition line between high and low density phases shifted away from the line α =β. Within the low density phase a platoon phase transition occurs, many features of which can be explained using exact results for asymmetric exclusion with particlewise disorder on the ring. In a certain region of parameter space the disorder induces a cusp in the current-density relation at maximum flow. Our simulations indicate that this does not affect the topology of the phase diagram, nor the familiar 1/Öx -decay of the density profile in the maximum current phase. On the other hand, we study the effects of defects in the road and of jumping rate ∆t on the phase diagram J−ρ, using asymmetric exclusion model with periodic boundaries. For different level of disorder, the space-time evolution of particles displays «waves» for both phases low density and high density. Besides, there exist two critical values of density, a lower critical value ρc1 and a upper critical value ρc2, in between the current is constant and reaches its maximal value Jmax which increases with increasing the jumping rate ∆t and/or the degree of disorder c. Increasing ∆t and/or c, ρc1 increases and ρc2 decreases

    Disorder-induced phase transition in a one-dimensional model of rice pile

    Full text link
    We propose a one-dimensional rice-pile model which connects the 1D BTW sandpile model (Phys. Rev. A 38, 364 (1988)) and the Oslo rice-pile model (Phys. Rev. lett. 77, 107 (1997)) in a continuous manner. We found that for a sufficiently large system, there is a sharp transition between the trivial critical behaviour of the 1D BTW model and the self-organized critical (SOC) behaviour. When there is SOC, the model belongs to a known universality class with the avalanche exponent τ=1.53\tau=1.53.Comment: 10 pages, 7 eps figure

    Analytical Approach to the One-Dimensional Disordered Exclusion Process with Open Boundaries and Random Sequential Dynamics

    Full text link
    A one dimensional disordered particle hopping rate asymmetric exclusion process (ASEP) with open boundaries and a random sequential dynamics is studied analytically. Combining the exact results of the steady states in the pure case with a perturbative mean field-like approach the broken particle-hole symmetry is highlighted and the phase diagram is studied in the parameter space (α,β)(\alpha,\beta), where α\alpha and β\beta represent respectively the injection rate and the extraction rate of particles. The model displays, as in the pure case, high-density, low-density and maximum-current phases. All critical lines are determined analytically showing that the high-density low-density first order phase transition occurs at αβ\alpha \neq \beta. We show that the maximum-current phase extends its stability region as the disorder is increased and the usual 1/1/\sqrt{\ell}-decay of the density profile in this phase is universal. Assuming that some exact results for the disordered model on a ring hold for a system with open boundaries, we derive some analytical results for platoon phase transition within the low-density phase and we give an analytical expression of its corresponding critical injection rate α\alpha^*. As it was observed numerically(19)^{(19)}, we show that the quenched disorder induces a cusp in the current-density relation at maximum flow in a certain region of parameter space and determine the analytical expression of its slope. The results of numerical simulations we develop agree with the analytical ones.Comment: 23 pages, 7 figures. to appear in J. Stat. Phy

    1/fα1/f^{\alpha} fluctuations in a ricepile model

    Full text link
    The temporal fluctuation of the average slope of a ricepile model is investigated. It is found that the power spectrum S(f)S(f) scales as 1/fα1/f^{\alpha} with α1.3\alpha\approx 1.3 when grains of rice are added only to one end of the pile. If grains are randomly added to the pile, the power spectrum exhibits 1/f21/f^2 behaviour. The profile fluctuations of the pile under different driving mechanisms are also discussed.Comment: 4 pages, 4 eps figures; Revtex format, published versio

    Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles

    Full text link
    Recent work on stochastic interacting particle systems with two particle species (or single-species systems with kinematic constraints) has demonstrated the existence of spontaneous symmetry breaking, long-range order and phase coexistence in nonequilibrium steady states, even if translational invariance is not broken by defects or open boundaries. If both particle species are conserved, the temporal behaviour is largely unexplored, but first results of current work on the transition from the microscopic to the macroscopic scale yield exact coupled nonlinear hydrodynamic equations and indicate the emergence of novel types of shock waves which are collective excitations stabilized by the flow of microscopic fluctuations. We review the basic stationary and dynamic properties of these systems, highlighting the role of conservation laws and kinetic constraints for the hydrodynamic behaviour, the microscopic origin of domain wall (shock) stability and the coarsening dynamics of domains during phase separation.Comment: 72 pages, 6 figures, 201 references (topical review for J. Phys. A: Math. Gen.

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure

    Traffic and Related Self-Driven Many-Particle Systems

    Full text link
    Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize in lanes, while similar systems are ``freezing by heating''? Why do self-organizing systems tend to reach an optimal state? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems. This review article on traffic introduces (i) empirically data, facts, and observations, (ii) the main approaches to pedestrian, highway, and city traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts like a general modelling framework for self-driven many-particle systems, including spin systems. Subjects such as the optimization of traffic flows and relations to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are discussed as well.Comment: A shortened version of this article will appear in Reviews of Modern Physics, an extended one as a book. The 63 figures were omitted because of storage capacity. For related work see http://www.helbing.org
    corecore