Recent work on stochastic interacting particle systems with two particle
species (or single-species systems with kinematic constraints) has demonstrated
the existence of spontaneous symmetry breaking, long-range order and phase
coexistence in nonequilibrium steady states, even if translational invariance
is not broken by defects or open boundaries. If both particle species are
conserved, the temporal behaviour is largely unexplored, but first results of
current work on the transition from the microscopic to the macroscopic scale
yield exact coupled nonlinear hydrodynamic equations and indicate the emergence
of novel types of shock waves which are collective excitations stabilized by
the flow of microscopic fluctuations. We review the basic stationary and
dynamic properties of these systems, highlighting the role of conservation laws
and kinetic constraints for the hydrodynamic behaviour, the microscopic origin
of domain wall (shock) stability and the coarsening dynamics of domains during
phase separation.Comment: 72 pages, 6 figures, 201 references (topical review for J. Phys. A:
Math. Gen.