102 research outputs found

    Id-1 is not expressed in the luminal epithelial cells of mammary glands

    Get PDF
    BACKGROUND: The family of inhibitor of differentiation/DNA binding (Id) proteins is known to regulate development in several tissues. One member of this gene family, Id-1, has been implicated in mammary development and carcinogenesis. Mammary glands contain various cell types, among which the luminal epithelial cells are primarily targeted for proliferation, differentiation and carcinogenesis. Therefore, to assess the precise significance of Id-1 in mammary biology and carcinogenesis, we examined its cellular localization in vivo using immunohistochemistry. METHODS: Extracts of whole mammary glands from wild type and Id-1 null mutant mice, and tissue sections from paraffin-embedded mouse mammary glands from various developmental stages and normal human breast were subjected to immunoblot and immunohistochemical analyses, respectively. In both these procedures, an anti-Id-1 rabbit polyclonal antibody was used for detection of Id-1. RESULTS: In immunoblot analyses, using whole mammary gland extracts, Id-1 was detected. In immunohistochemical analyses, however, Id-1 was not detected in the luminal epithelial cells of mammary glands during any stage of development, but it was detected in vascular endothelial cells. CONCLUSION: Id-1 is not expressed in the luminal epithelial cells of mammary glands

    Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    Get PDF
    BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225)Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225)Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225)Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225)Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225)Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy

    The Prosensory Function of Sox2 in the Chicken Inner Ear Relies on the Direct Regulation of Atoh1

    Get PDF
    The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh1 through a transcriptional activator function that requires the integrity of Sox2 DNA binding domain. Atoh1 activation depends on Sox transcription factor binding sites (SoxTFBS) present in the Atoh1 3′ enhancer where Sox2 directly binds, as shown by site directed mutagenesis and chromatin immunoprecipitation (ChIP). In the inner ear, Atoh1 enhancer activity is detected in the neurosensory domain and it depends on Sox2. Dominant negative competition (Sox2HMG-Engrailed) and mutation of the SoxTFBS abolish the reporter activity in vivo. Moreover, ChIP assay in isolated otic vesicles shows that Sox2 is bound to the Atoh1 enhancer in vivo. However, besides activating Atoh1, Sox2 also promotes the expression of Atoh1 negative regulators and the temporal profile of Atoh1 activation by Sox2 is transient suggesting that Sox2 triggers an incoherent feed-forward loop. These results provide a mechanism for the prosensory function of Sox2 in the inner ear. We suggest that sensory competence is established early in otic development through the activation of Atoh1 by Sox2, however, hair cell differentiation is prevented until later stages by the parallel activation of negative regulators of Atoh1 function

    Endostatin's endpoints—Deciphering the endostatin antiangiogenic pathway

    Get PDF
    AbstractUp until now, the precise mechanism for endostatin's antiangiogenesis action was not known. In a recent report, Abdollahi et al. (2004) have taken advantage of gene array and proteomic analysis to map the antiangiogenic pathways turned on by endostatin. This study resolves some of the controversies surrounding endostatin's biology, and provides a new direction to help dissect the molecular pathways involved in endostatin's selective tumor antiangiogenic effects

    Mad2 phosphorylation regulates its association with Mad1 and the APC/C

    No full text
    Improper attachment of the mitotic spindle to the kinetochores of paired sister chromatids in mitosis is monitored by a checkpoint that leads to an arrest in early metaphase. This arrest requires the inhibitory association of Mad2 with the anaphase promoting complex/cyclosome (APC/C). It is not known how the association of Mad2 with the kinetochore and the APC/C is regulated in mitosis. Here, we demonstrate that human Mad2 is modified through phosphorylation on multiple serine residues in vivo in a cell cycle dependent manner and that only unphosphorylated Mad2 interacts with Mad1 or the APC/C in vivo. A Mad2 mutant containing serine to aspartic acid mutations mimicking the C-terminal phosphorylation events fails to interact with Mad1 or the APC/C and acts as a dominant-negative antagonist of wild-type Mad2. These data suggest that the phosphorylation state of Mad2 regulates its checkpoint activity by modulating its association with Mad1 and the APC/C

    Cancer cells preferentially lose small chromosomes

    No full text
    Genetic and genomic aberrations are the primary cause of cancer. Chromosome missegregation leads to aneuploidy and provides cancer cells with a mechanism to lose tumor suppressor loci and gain extra copies of oncogenes. Using cytogenetic and array‐based comparative genomic hybridization data, we analyzed numerical chromosome aneuploidy in 43,205 human tumors and found that 68% of solid tumors are aneuploid. In solid tumors, almost all chromosomes are more frequently lost than gained with chromosomes 7, 12 and 20 being the only exceptions with more frequent gains. Strikingly, small chromosomes are lost more readily than large ones, but no such inverse size correlation is observed with chromosome gains. Because of increasing levels of proteotoxic stress, chromosome gains have been shown to slow cell proliferation in a manner proportional to the number of extra gene copies gained. However, we find that the extra chromosome in trisomic tumors does not preferentially have a low gene copy number, suggesting that a proteotoxicity‐mediated proliferation barrier is not sustained during tumor progression. Paradoxically, despite a bias toward chromosome loss, gains of chromosomes are a poor prognostic marker in ovarian adenocarcinomas. In addition, we find that solid and non‐solid cancers have markedly distinct whole‐chromosome aneuploidy signatures, which may underlie their fundamentally different etiologies. Finally, preferential chromosome loss is observed in both early and late stages of astrocytoma. Our results open up new avenues of enquiry into the role and nature of whole‐chromosome aneuploidy in human tumors and will redirect modeling and genetic targeting efforts in patients

    Figures from Nam and Benezra, 2009 at high resolution (600 ppi)

    No full text
    For anyone interested.Figures from Nam and Benezra, 2009 at 600 ppi.After download, can be viewed with high magnification zoom in Acrobat or other pdf viewers.Changes from the initial publication:(1) Color profile corrected so the colors don't look over-saturated on modern screens.</p
    corecore