482 research outputs found

    Fresh-Register Automata

    Get PDF
    What is a basic automata-theoretic model of computation with names and fresh-name generation? We introduce Fresh-Register Automata (FRA), a new class of automata which operate on an infinite alphabet of names and use a finite number of registers to store fresh names, and to compare incoming names with previously stored ones. These finite machines extend Kaminski and Francez’s Finite-Memory Automata by being able to recognise globally fresh inputs, that is, names fresh in the whole current run. We exam-ine the expressivity of FRA’s both from the aspect of accepted languages and of bisimulation equivalence. We establish primary properties and connections between automata of this kind, and an-swer key decidability questions. As a demonstrating example, we express the theory of the pi-calculus in FRA’s and characterise bisimulation equivalence by an appropriate, and decidable in the finitary case, notion in these automata

    The Immitigable Nature of Assembly Bias: The Impact of Halo Definition on Assembly Bias

    Full text link
    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ\Delta. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ\Delta. For conventional halo definitions (Δ∌200m−600m\Delta \sim 200\mathrm{m}-600\mathrm{m}), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ∌20m−40m\Delta \sim 20\mathrm{m}-40\mathrm{m} for haloes with M200mâ‰Č1012 h−1M⊙M_{200\mathrm{m}} \lesssim 10^{12}\, h^{-1}\mathrm{M}_{\odot}. Smaller Δ\Delta implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200m≳1013 h−1M⊙M_{200\mathrm{m}} \gtrsim 10^{13}\, h^{-1}\mathrm{M}_{\odot}) larger overdensities, Δ≳600m\Delta \gtrsim 600\mathrm{m}, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g., concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.Comment: 19 pages, 13 figures. Updated to published version. Main result summarized in Figure 1

    Injection Matching Studies using Turn by Turn Beam Profile Measurements in the CERN PS

    Get PDF
    The very small emittance beam needed for the LHC requires that the emittance blow-up in its injector machines must be kept to a minimum. Mismatch upon the beam transfer from one machine to the next is a potential source of such blow-up. The CERN PS ring is equipped with 3 Secondary Emission Grids (SEM-Grids) which are used for emittance measurement at injection. One of these has been converted to a multi-turn mode, in which several tens of consecutive beam passages can be observed. This allows the study of mismatch between the PS-Booster and the PS. This paper describes the instrument and experimental results obtained during the last year

    Statics and dynamics of weakly coupled antiferromagnetic spin-1/2 ladders in a magnetic field

    Full text link
    We investigate weakly coupled spin-1/2 ladders in a magnetic field. The work is motivated by recent experiments on the compound (C5H12N)2CuBr4 (BPCB). We use a combination of numerical and analytical methods, in particular the density matrix renormalization group (DMRG) technique, to explore the phase diagram and the excitation spectra of such a system. We give detailed results on the temperature dependence of the magnetization and the specific heat, and the magnetic field dependence of the nuclear magnetic resonance (NMR) relaxation rate of single ladders. For coupled ladders, treating the weak interladder coupling within a mean-field or quantum Monte Carlo approach, we compute the transition temperature of triplet condensation and its corresponding antiferromagnetic order parameter. Existing experimental measurements are discussed and compared to our theoretical results. Furthermore we compute, using time dependent DMRG, the dynamical correlations of a single spin ladder. Our results allow to directly describe the inelastic neutron scattering cross section up to high energies. We focus on the evolution of the spectra with the magnetic field and compare their behavior for different couplings. The characteristic features of the spectra are interpreted using different analytical approaches such as the mapping onto a spin chain, a Luttinger liquid (LL) or onto a t-J model. For values of parameters for which such measurements exist, we compare our results to inelastic neutron scattering experiments on the compound BPCB and find excellent agreement. We make additional predictions for the high energy part of the spectrum that are potentially testable in future experiments.Comment: 35 pages, 26 figure

    Big data simulations for capacity improvement in a general ophthalmology clinic

    Get PDF
    PURPOSE Long total waiting times (TWT) experienced by patients during a clinic visit have a significant adverse effect on patient's satisfaction. Our aim was to use big data simulations of a patient scheduling calendar and its effect on TWT in a general ophthalmology clinic. Based on the simulation, we implemented changes to the calendar and verified their effect on TWT in clinical practice. DESIGN AND METHODS For this retrospective simulation study, we generated a discrete event simulation (DES) model based on clinical timepoints of 4.401 visits to our clinic. All data points were exported from our clinical warehouse for further processing. If not available from the electronic health record, manual time measurements of the process were used. Various patient scheduling models were simulated and evaluated based on their reduction of TWT. The most promising model was implemented into clinical practice in 2017. RESULTS During validation of our simulation model, we achieved a high agreement of mean TWT between the real data (229 ± 100 min) and the corresponding simulated data (225 ± 112 min). This indicates a high quality of the simulation model. Following the simulations, a patient scheduling calendar was introduced, which, compared with the old calendar, provided block intervals and extended time windows for patients. The simulated TWT of this model was 153 min. After implementation in clinical practice, TWT per patient in our general ophthalmology clinic has been reduced from 229 ± 100 to 183 ± 89 min. CONCLUSION By implementing a big data simulation model, we have achieved a cost-neutral reduction of the mean TWT by 21%. Big data simulation enables users to evaluate variations to an existing system before implementation into clinical practice. Various models for improving patient flow or reducing capacity loads can be evaluated cost-effectively

    Response of neovascular central serous chorioretinopathy to an extended upload of anti-VEGF agents

    Get PDF
    Purpose To determine the anatomical and functional outcomes of an extended 6-month intravitreal anti-vascular endothelial growth factor (anti-VEGF) upload in choroidal neovascularization (CNV) secondary to chronic central serous chorioretinopathy (CSCR). Methods A retrospective database analysis was performed applying the following inclusion criteria: (1) diagnosis of CSCR, (2) diagnosis of secondary CNV, and (3) treatment of at least six consecutive injections of anti-VEGF. Outcome measures included the change of central retinal subfield thickness, remodeling of the pigment epithelium detachments, and change in visual function. Results Twenty-one eyes of 21 patients were included. Mean patient age was 65 ± 8.3 years, and 35% of the patients (n = 8) were female. Mean disease duration before diagnosis of CNV was 48 ± 25.3 months. Mean central retinal thickness decreased from 346 ± 61 to 257 ± 57 ÎŒm (p < 0.01) after the sixth injection while mean visual acuity improved from 0.65 ± 0.35 to 0.49 ± 0.29 (logMAR; p < 0.01). Of note, an extended upload of six as opposed to three injections yielded an additional mean central retinal thickness reduction (280 ± 46 ÎŒm vs. 257 ± 57 ÎŒm, p = 0.038). Significant CNV remodeling was observed as a decrease in pigment epithelium detachment (PED) vertical (p = 0.021) and horizontal diameter (p = 0.024) as well as PED height (p < 0.01). Conclusion An extended anti-VEGF upload of six consecutive injections seems to be effective in inducing CNV remodeling and fluid resorption in CNV complicating chronic CSCR

    Impact of Sub-Retinal Fluid on the Long-Term Incidence of Macular Atrophy in Neovascular Age-related Macular Degeneration under Treat & Extend Anti-Vascular Endothelial Growth Factor Inhibitors

    Get PDF
    Sub-retinal fluid (SRF) has been discussed as a protective factor against macular atrophy in eyes with neovascular age-related macular degeneration (nAMD).To gauge the impact of SRF on macular atrophy, a database of 310 nAMD eyes was screened for eyes manifesting an SRF-only phenotype under treat & extend anti-VEGF treatment, defined as nAMD expressing CNV exudation beyond the three monthly anti-VEGF loading doses by SRF only without any signs of exudative intra-retinal fluid (IRF) for >= 3 years. Incidence of macular atrophy and treatment responses were evaluated on multimodal imaging, including optical coherence tomography (OCT), blue autofluorescence (BAF) and near-infrared (NIR) confocal scanning laser ophthalmoscopy and fluorescence and indocyanine green angiography (FAG/ICGA). In total, 27 eyes (8.7%) of 26 patients with a mean follow-up of 4.2 +/- 0.9 (3-5) years met the inclusion criteria. Mean age was 72 +/- 6 (range: 61-86) years. The SRF only phenotype was seen from baseline in 14 eyes (52%), and in 13 eyes (48%) after a mean 1.0 +/- 1.3 (1-3) injections. In years 1 to 5, mean 7.5, 5.9, 6.1, 6.1 and 7.0 anti-VEGF injections were given (p=0.33). Cumulative macular atrophy incidence was 11.5% at year 1, 15.4% throughout years 2 to 4, and 22.4% at year 5. In conclusion, eyes manifesting activity by SRF only in treat & extend anti-VEGF regimen for nAMD seem to exhibit rather low rates of macular atrophy during long-term follow-up. SRF might be an indicator of a more benign form of nAMD

    Design of beam optics for the Future Circular Collider e+e- -collider rings

    Full text link
    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/-2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    Treatment response evaluation with (18)F-FDG PET/CT and (18)F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation.

    Get PDF
    AIM The aim of this study was to assess the combined use of the radiotracers (18)F-FDG and (18)F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT). PATIENTS AND METHODS Thirty-four patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with (18)F-FDG and (18)F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD). RESULTS An analysis was possible in 29 patients: three with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, four patients very good partial response-VGPR, nine patients partial response-PR). After treatment, (18)F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5 % and a specificity of 100 %. According to the EORTC 1999 criteria, (18)F-FDG PET/CT-based treatment response revealed CR in 14 patients ((18)F-FDG PET/CT CR), PR in 11 patients ((18)F-FDG PET/CT PR) and progressive disease in four patients ((18)F-FDG PET/CT PD). In terms of (18)F-NaF PET/CT, 4/29 patients (13.8 %) had a negative baseline scan, thus failed to depict MM. Regarding the patients for which a direct lesion-to-lesion comparison was feasible, (18)F-NaF PET/CT depicted 56 of the 129 (18)F-FDG positive lesions (43 %). Follow-up (18)F-NaF PET/CT showed persistence of 81.5 % of the baseline (18)F-NaF positive MM lesions after treatment, despite the fact that 64.7 % of them had turned to (18)F-FDG negative. Treatment response according to (18)F-NaF PET/CT revealed CR in one patient ((18)F-NaF PET/CT CR), PR in five patients ((18)F-NaF PET/CT PR), SD in 12 patients ((18)F-NaF PET/CT SD), and PD in seven patients ((18)F-NaF PET/CT PD). Dynamic (18)F-FDG and (18)F-NaF PET/CT studies showed that SUVaverage, SUVmax, as well as the kinetic parameters K1, influx and FD from reference bone marrow and skeleton responded to therapy with a significant decrease (p < 0.001). CONCLUSION F-FDG PET/CT demonstrated a sensitivity of 57.7 % and a specificity of 100 % in treatment response evaluation of MM. Despite its limited sensitivity, the performance of (18)F-FDG PET/CT was satisfactory, given that 6/9 false negative patients in follow-up scans (66.7 %) were clinically characterized as nCR, a disease stage with very low tumor mass. On the other hand, (18)F-NaF PET/CT does not seem to add significantly to (18)F-FDG PET/CT in treatment response evaluation of MM patients undergoing HDT and ASCT, at least shortly after therapy
    • 

    corecore