5,451 research outputs found

    Magnetoroton scattering by phonons in the fractional quantum Hall regime

    Full text link
    Motivated by recent phonon spectroscopy experiments in the fractional quantum Hall regime we consider processes in which thermally excited magnetoroton excitations are scattered by low energy phonons. We show that such scattering processes can never give rise to dissociation of magnetorotons into unbound charged quasiparticles as had been proposed previously. In addition we show that scattering of magnetorotons to longer wavelengths by phonon absorption is possible because of the shape of the magnetoroton dispersion curve and it is shown that there is a characteristic cross-over temperature above which the rate of energy transfer to the electron gas changes from an exponential (activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev

    A sex difference in the context-sensitivity of dominance perceptions

    Get PDF
    Although dominance perceptions are thought to be important for effective social interaction, their primary function is unclear. One possibility is that they simply function to identify individuals who are capable of inflicting substantial physical harm, so that the perceiver can respond to them in ways that maximize their own physical safety. Another possibility is that they are more specialized, functioning primarily to facilitate effective direct (i.e., violent) intrasexual competition for mates, particularly among men. Here we used a priming paradigm to investigate these two possibilities. Facial cues of dominance were more salient to women after they had been primed with images of angry men, a manipulation known to activate particularly strong self-protection motivations, than after they had been primed with images of angry women or smiling individuals of either sex. By contrast, dominance cues were more salient to men after they had been primed with images of women than when they had been primed with images of men (regardless of the emotional expressions displayed), a manipulation previously shown to alter men's impressions of the sex ratio of the local population. Thus, men's dominance perceptions appear to be specialized for effective direct competition for mates, while women's dominance perceptions may function to maximize their physical safety more generally. Together, our results suggest that men's and women's dominance perceptions show different patterns of context-sensitivity and, potentially, shed new light on the routes through which violence and intrasexual competition have shaped dominance perceptions

    A Technique to Derive Improved Proper Motions for Kepler Objects of Interest

    Get PDF
    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201

    Suggestion on the Incorporation of Cooperative Livestock Shipping Associations under the Laws of South Dakota

    Get PDF
    The cooperative shipping of livestock form South Dakota points has become so general that nearly every farm is familiar with the workings of the Cooperative Shipping Association. During the early stages of this movement; that is, up to the present time, these organizations have been for the most part loosely formed, unincorporated associations of producers with no very permanent existence. Where they were well managed, they have accomplished fairly well the principal purposes of a livestock shipping association; namely, the narrowing of the handling margin at the local points, better grading of the stock shipped, and the elimination of excessive duplication in the local handling agencies

    Passage-time statistics of superradiant light pulses from Bose-Einstein condensates

    Full text link
    We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between the Kapitza Dirac and the Bragg regimes. A possible connection of the present observations to Brownian motion is also discussed.Comment: Close to the version published in J. Phys.

    Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage

    Get PDF
    Coherent control of collective spontaneous emission in an extended atomic ensemble resonantly interacting with single-photon wave packets is analyzed. A scheme for coherent manipulation of collective atomic states is developed such that superradiant states of the atomic system can be converted into subradiant ones and vice versa. Possible applications of such a scheme for optical quantum state storage and single-photon wave packet shaping are discussed. It is shown that also in the absence of inhomogeneous broadening of the resonant line, single-photon wave packets with arbitrary pulse shape may be recorded as a subradiant state and reconstructed even although the duration of the wave packets is larger than the superradiant life-time. Specifically the applicability for storing time-bin qubits, which are used in quantum cryptography is analyzed.Comment: 11 pages, 4 figures, submitted to PR

    Calculations of periodicity from H<i>α</i> profiles of Proxima Centauri

    Get PDF
    We investigate retrieval of the stellar rotation signal for Proxima Centauri. We make use of high-resolution spectra taken with UVES and HARPS of Proxima Centauri over a 13-yr period as well as photometric observations of Proxima Centauri from ASAS and HST. We measure the Hα equivalent width and Hα index, skewness and kurtosis and introduce a method that investigates the symmetry of the line, the peak ratio, which appears to return better results than the other measurements. Our investigations return a most significant period of 82.6 ± 0.1 days, confirming earlier photometric results and ruling out a more recent result of 116.6 days which we conclude to be an alias induced by the specific HARPS observation times. We conclude that whilst spectroscopic Hα measurements can be used for period recovery, in the case of Proxima Centauri the available photometric measurements are more reliable. We make 2D models of Proxima Centauri to generate simulated Hα, finding that reasonable distributions of plage and chromospheric features are able to reproduce the equivalent width variations in observed data and recover the rotation period, including after the addition of simulated noise and flares. However the 2D models used fail to generate the observed variety of line shapes measured by the peak ratio. We conclude that only 3D models which incorporate vertical motions in the chromosphere can achieve this

    Microwave emission from a crystal of molecular magnets -- The role of a resonant cavity

    Full text link
    We discuss the effects caused by a resonant cavity around a sample of a magnetic molecular crystal (such as Mn12{}_{12}-Ac), when a time dependent external magnetic field is applied parallel to the easy axis of the crystal. We show that the back action of the cavity field on the sample significantly increases the possibility of microwave emission. This radiation process can be supperradiance or a maser-like effect, depending on the strength of the dephasing. Our model provides further insight to the theoretical understanding of the bursts of electromagnetic radiation observed in recent experiments accompanying the resonant quantum tunneling of magnetization. The experimental findings up to now can all be explained as being a maser effect rather than superradiance. The results of our theory scale similarly to the experimental findings, i.e., with increasing sweep rate of the external magnetic field, the emission peaks are shifted towards higher field values.Comment: 12 pages, 6 figures. To appear in Phys. Rev.

    Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes

    Full text link
    Many-electron effects often dramatically modify the properties of reduced dimensional systems. We report calculations, based on an many-electron Green's function approach, of electron-hole interaction effects on the optical spectra of small-diameter single-walled carbon nanotubes. Excitonic effects qualitatively alter the optical spectra of both semiconducting and metallic tubes. Excitons are bound by ~ 1 eV in the semiconducting (8,0) tube and by ~ 100 meV in the metallic (3,3) tube. These large many-electron effects explain the discrepancies between previous theories and experiments.Comment: 6 pages, 3 figures, 2 table

    Quantum interference initiated super- and subradiant emission from entangled atoms

    Get PDF
    We calculate the radiative characteristics of emission from a system of entangled atoms which can have a relative distance larger than the emission wavelength. We develop a quantum multipath interference approach which explains both super- and subradiance though the entangled states have zero dipole moment. We derive a formula for the radiated intensity in terms of different interfering pathways. We further show how the interferences lead to directional emission from atoms prepared in symmetric W-states. As a byproduct of our work we show how Dicke's classic result can be understood in terms of interfering pathways. In contrast to the previous works on ensembles of atoms, we focus on finite numbers of atoms prepared in well characterized states.Comment: 10 pages, 8 figures, 2 Table
    • …
    corecore