1,987 research outputs found
Electron-phonon interaction in the solid form of the smallest fullerene C
The electron-phonon coupling of a theoretically devised carbon phase made by
assembling the smallest fullerenes C is calculated from first
principles. The structure consists of C cages in an {\it fcc} lattice
interlinked by two bridging carbon atoms in the interstitial tetrahedral sites
({\it fcc}-C). The crystal is insulating but can be made metallic by
doping with interstitial alkali atoms. In the compound NaC the
calculated coupling constant is 0.28 eV, a value much larger
than in C, as expected from the larger curvature of C. On the
basis of the McMillan's formula, the calculated =1.12 and a
assumed in the range 0.3-0.1 a superconducting T in the range 15-55 K is
predicted.Comment: 7 page
New insight into cataract formation -- enhanced stability through mutual attraction
Small-angle neutron scattering experiments and molecular dynamics simulations
combined with an application of concepts from soft matter physics to complex
protein mixtures provide new insight into the stability of eye lens protein
mixtures. Exploring this colloid-protein analogy we demonstrate that weak
attractions between unlike proteins help to maintain lens transparency in an
extremely sensitive and non-monotonic manner. These results not only represent
an important step towards a better understanding of protein condensation
diseases such as cataract formation, but provide general guidelines for tuning
the stability of colloid mixtures, a topic relevant for soft matter physics and
industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let
The electron-phonon coupling strength at metal surfaces directly determined from the Helium atom scattering Debye-Waller factor
A new quantum-theoretical derivation of the elastic and inelastic scattering
probability of He atoms from a metal surface, where the energy and momentum
exchange with the phonon gas can only occur through the mediation of the
surface free-electron density, shows that the Debye-Waller exponent is directly
proportional to the electron-phonon mass coupling constant . The
comparison between the values of extracted from existing data on the
Debye-Waller factor for various metal surfaces and the values known
from literature indicates a substantial agreement, which opens the possibility
of directly extracting the electron-phonon coupling strength in quasi-2D
conducting systems from the temperature or incident energy dependence of the
elastic Helium atom scattering intensities.Comment: 14 pages, 2 figures, 1 tabl
Suppression of inelastic bound state resonance effects by the dimensionality of atom-surface scattering event
We develop a multidimensional coupled channel method suitable for studying
the interplay of bound state resonance and phonon assisted scattering of inert
gas atoms from solid surfaces in one, two and three dimensions. This enables us
to get insight into the features that depend on the dimensionality of inelastic
resonant processes typically encountered in low energy He atom scattering from
surfaces, in general, and to elaborate on the observability of recently
conjectured near threshold resonances in scattering from Einstein phonons, in
particular.Comment: 2 figure
Passage-time statistics of superradiant light pulses from Bose-Einstein condensates
We discuss the passage-time statistics of superradiant light pulses generated
during the scattering of laser light from an elongated atomic Bose-Einstein
condensate. Focusing on the early-stage of the phenomenon, we analyze the
corresponding probability distributions and their scaling behaviour with
respect to the threshold photon number and the coupling strength. With respect
to these parameters, we find quantities which only vary significantly during
the transition between the Kapitza Dirac and the Bragg regimes. A possible
connection of the present observations to Brownian motion is also discussed.Comment: Close to the version published in J. Phys.
- …