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Abstract

In the general scheme of gravity field modelling long , medium and short wavelength constituents

of the gravity field derived from e.g. geopotential model, terrestrial data and digital terrain model

respectively, are routinely combined. In this study, spectral characteristics of terrestrial data sets are

investigated. The estimation of spectral sensitivity of gravity related quantities such as gravity

anomaly, vertical deflections and gravity gradients was accomplished through Fourier PSD and

covariance analysis depending on the spatial distribution of data points. The information content of

the estimated spectra were validated on global and local levels to access their further utilization. The

spectra were compared to the 1D spectrum of the gravitational field derived from spherical harmonic

coefficients using a high resolution global gravitational model as well as to an analytical

approximation. Besides the frequency domain investigations the information content regarding the

different wavelength structure comprised in terrestrial and EGM2008 model is investigated in the

space domain based on covariance analysis. As a combined validation process the gravity degree

variances were transformed to the necessary auto and cross covariance functions to predict geoid

height from gravity anomaly, which ensures an independent validation process of the computed

spectrum. Based on the spectral characteristics of terrestrial measurement spectral weights for

spectral combination were derived involving global gravity field model, gravity and gravity gradient

data in gravity field modelling. To determine the geoid in the whole spectral band the specific

integral kernels in the spectral domain should be modified using the suggested spectral weights.

1. Introduction

Terrestrial measurements such as geoid height, gravity anomaly, vertical deflections and gravity

gradients are different functionals of the gravitational potential therefore, theoretically it is possible

to recover any gravity related quantity containing the full spectral information from measurements

(Schwarz 1984). Although the highest signal power of the gravitational potential can be found at low

spherical harmonic degrees i.e. 99.2% of the total power concentrated into spectral band of
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spherical harmonic degree 2 36 according to the analytical Tscherning Rapp degree variance model

(Tscherning and Rapp 1974) for a comprehensive and high (cm level) precision geoid determination

all available gravity related data should be combined e.g. by a least squares estimation scheme or

using spectral combination techniques. The terms long, medium, short and very short wavelength

are defined in the literature, however in this study these are accommodated to the spectral content

of the terrestrial data sets. The long wavelength addresses the spectral bands which can be

recovered only from satellite observations, it covers long wavelength features of the gravity field up

to wavelength approximately 110 km, which corresponds to spherical harmonic degree 360. The

medium wavelength comprises gravity field features from wavelength approximately 110 km to 50

km. Short wavelength covers the spectral bands up to the maximal resolution of the gravity data sets,

i.e. half wavelength 2 km. Small scale variations of the gravitational field stem from the effect of the

topographic masses, the very high wavelength in this study denotes contribution of the topographic

masses derived from a high pass filtered elevation data set. Possible overlapping exists between the

spectra of the different observables so the above defined spectral bands can be regarded as an

approximation.

Power spectra of terrestrial gravity field quantities give a deeper insight of gravity field features

providing a Fourier domain representation of the data at medium and short wavelength scale. The

term spectral sensitivity was introduced by Schwarz (1984). Since then spectral characteristics of the

gravity field were investigated in several studies. Forsberg (1984) analysed topography and gravity

data to estimate power spectra, degree variances and covariance functions. Flury (2006)

investigated the short wavelength spectral behaviour of gravity anomalies using various data sets

describing different roughness gravity field. Zhang and Featherstone (2004) used power spectra

analysis besides other techniques to feature free air, refined Bouguer and topographic isostatic

gravity anomalies at short wavelengths to determine which data set is the smoothest and the most

suitable for gravity data gridding. The spectral properties of the short wavelength part of the gravity

field were analysed by Voigt and Denker (2007) from flat to mountainous areas utilizing gravity data

derived from high resolution Residual Terrain Models (RTM). Voigt and Denker (2011) compared the

spectral behaviour of height anomalies and vertical deflections using analytical degree variance

model. In this study it is attempted to distinguish and determine the spectral dominance of different

terrestrial data types related to different functionals of the disturbing potential. The results of such

an analysis could contribute the proper spectral combination of data as it is demonstrated in the

following pages.

2. Spectral analysis methods



The application of spectral methods has a long history also in geophysics. It should be mentioned

that the principles of these methods have been already defined in the middle of the last century in a

number of textbooks and papers (e.g. Grant and West 1965, Dorman and Lewis 1970, Parker 1972)

and were applied mainly for the interpretation of magnetic and gravity anomalies. It was recognized

very soon at the beginning of the era of digital computers that the convolution integrals involved

either in the inversion or filtering of potential field data can be efficiently solved in the Fourier

domain. So the efforts to represent the gravity field of the Earth as a sum of harmonic base functions

(sinusoidal, spherical, ellipsoidal depending on the coordinate system used) luckily supported by the

fast computational algorithms based on Fast Fourier Transforms giving a uniform spectral approach

both for analysis and synthesis.

The horizontal extension of the gravity related data up to a few hundreds kilometres allows the

planar approximation in power spectral density computation, so the calculation of power spectral

density distribution functions is possible by standard discrete Fourier Transform (DFT) techniques

(Brigham 1974) if the data are given on equidistant grids. For continental scale data sets tapers and

methods developed for data localized on the sphere should be utilized.

A thorough description of the computational process of power spectra of gravity related quantities is

given in Flury (2006) and Schwarz et al. (1990), therefore only some basic relations are repeated.

Essentially there are two ways to determine power spectra of measured gravity field quantities

depending on the spatial distribution of data points. One of the methods is based on gridded data

sets, in this case special attention is needed to avoid data gaps during the interpolation process since

these could distort the estimated spectra. The 2D power spectral density (PSD) of a gridded data set

is estimated by 2D Fourier transform applying some window on the data to avoid spectral leakage

(Stoica and Moses 1997). We used multitaper spectral estimation method with discrete prolate

spheroidal tapers (Slepian 1983, Hanssen 1997) to reduce both leakage and variance of the

estimated spectra. The advantage of multitaper spectral methods over individual estimates is that

the data, which is windowed using orthogonal tapers, can be considered as a separate realization of

the respecting stochastic process and variance of the estimated spectrum can be reduced using the

linear combination of the individual spectra. Slepians�s tapers are optimally concentrated windows in

a given frequency band. The 2D Slepian concentration problem on the sphere was elaborated by

Simons et al. (2006) and it is suggested to utilize those localization windows for data sets

approaching a significant fraction of the surface of the Earth to avoid distortion of the spectrum.

Assuming that the 2D PSD is isotropic, the estimated PSD is radially averaged to a 1D PSD. Spherical

harmonic power spectrum, i.e. the well known degree variances land planar power spectrum are

closely related, the transformation is given in Forsberg (1984)



, (1)

where the spatial radial frequency w is related to the spherical harmonic degree l as

, (2)

and R is the mean radius of the Earth.

An alternative approach of computing degree variances is based on the covariance function of

measured gravity related quantities, what are usually given at scattered points. An analytical model is

routinely fitted to empirical covariance function to ensure that the function is positive definite.

Covariance function and degree variances form a Legendre transform pair (just like the auto

covariance function of a stochastic process relates to its power spectrum by forming a Fourier

transform pair in Cartesian coordinate systems), degree variances can be computed by numerical

integration of the analytical covariance function (Flury 2002) for spherical distances

(3)

where denotes Legendre polynomials of degree l, and k = k * is the kth spherical

distance. There are other methods of computing degree variances from covariances, for further

details the reader is referred to Flury (2006).

Similarly to digital Fourier analysis the extension of the area (D [km]) and the grid spacing or average

point distance (d [km]) in case of covariance function determine the recoverable spherical harmonic

degree bands of the computed power spectra (Flury 2002, Voigt and Denker 2007)

. (4)

A significant trend in data can bias spectral analysis, hence the low degree part respecting the

regional trend of the gravitational field described by a spherical harmonic model was removed from

the available terrestrial data sets and spectral analysis was accomplished using zero mean residual

gravity field quantities. Therefore, power amplitudes for longer wavelength are less accurate,

anyhow these amplitudes could not be recovered due to the restricted areal extension of the data

sets. The emphasis is on the analysis of medium and short wavelength properties of the gravity field

in this study.



3. Data sets

Gravity, deflection of vertical and horizontal gradient data sets of Hungary were used for the

investigation of the spectral behaviour of the gravity field. Since these gravity field quantities are

related to the first and second derivatives of the disturbing potential they dominate in different

spectral bands of the corresponding gravity field. The following data sets were available in our

computation:

� mean free air gravity anomalies given in 1� x 1.5� grid spacing and covering the whole country

(corresponds to approximately 2 km x 2 km block size according to the mean latitude of the

country). Based on earlier investigations (Papp 1993) the accuracy of this

interpolated/gridded data is not better than a few tenth of a mGal even if the point density

in Hungary is extremely high (3 4 points / km2) and carefully investigated physical models

(e.g. the elevation dependence of free air gravity anomalies) are involved in the

interpolation.

� point free air gravity anomalies at 1244 points (average point distance approximately 9 km)

� 138 astrogeodetic vertical deflections both North South and East West components, the

average point distance between stations is approximately 26 km

� at more than 26,000 torsion balance stations horizontal gravity gradients, mainly covering

the flat areas (e.g. Great Hungarian Plain) of Hungary

4. Analysis of the results of power spectra computation

Validation of the estimated power spectra was performed in two ways. First, computed degree

variances were compared with global gravitational model (GGM) derived and analytical degree

variance models. The target quantity in gravity field modelling is geoid height, so in the second part

of this section the spectra of geoid height computed from available gravity field quantities and the

overlapping wavelength domains between terrestrial data and EGM2008 model based on covariance

analysis were investigated. Besides the frequency and space domain investigations of frequency

content of terrestrial and global gravity field model a test computation was carried out transforming

gravity degree variances to auto and cross covariance functions of gravity data and gravity geoid

data pairs, respectively and residual geoid height predicted from gravity was compared to residual

GPS/levelling data.

4.1. Comparison with degree variances from spherical harmonic model and analytical approximation



Since the EGM2008 model (Pavlis et al. 2008) is the highest resolution global gravity field model

(GGM) which is available, the spectra of each gravity field quantity was compared to the

corresponding gravity functional degree variances derived from the coefficients of the model.

Although EGM2008 describes Earth�s gravitational field with unprecedented detail, the model is

completed to spherical harmonic degree and order l,m = 2160, which corresponds to approximately 9

km in latitude, it is not capable to feature gravity field at wavelengths corresponding to data spacing.

Therefore, the analytical Tscherning Rapp anomaly degree variance model was also utilized to

characterize the gravitational signal in the recoverable spectral bands.

Degree variances of different gravity field functionals can be derived from degree variances of the

disturbing potential applying the corresponding eigenvalues of the defining operators (van Gelderen

and Rummel (2001)):

. (5)

G denotes the gravity field functional under consideration, is the eigenvalue of the defining

operator in the spectral domain and is the degree variances of the disturbing potential which

can be computed from spherical harmonic coefficients of a GGM

(6)

or from Tscherning Rapp variance model (Tscherning and Rapp 1974)

, (7)

where GM is the universal gravitational constant times the mass of the Earth. Relevant eigenvalues

regarding this study are listed in Tabl. 1. The formal error spectrum of a GGM ( l ) is computed by

replacing the spherical harmonic coefficients in Eq. (6) with their error estimation.

Please insert Tabl. 1. near here

Spectral properties of gravity anomalies were investigated using the gridded gravity data set as well

as point value anomalies. Since gravity data (5� x 5�block values) from Hungary were incorporated in

the gravity data set, which was used for the determination of EGM2008 model, correlation may be

exist between the model and data. Mean anomalies offer wider spectral band recovery of the gravity



signal since the higher resolution of the data set compared with point anomalies. Nevertheless, point

free air anomalies can be regarded as an EGM2008 independent data set and comparing power

spectra of mean and point anomalies in the common frequency bands could reveal whether there is

a systematic difference between them.

In both cases, measured anomalies were reduced with ones computed from EGM2008 to l,m = 600.

The effect of high frequency topographic masses were also removed from the local residual mean

anomalies using RTM approach (Residual Terrain Modeling, Tscherning et al 1992) above the spectral

content of EGM2008, since free air anomalies are highly correlated with height and any trend in the

data could distort spectral analysis. Accordingly residual anomalies were utilized for power spectra

computations

, (8)

where pts stands for point, avg for mean gravity data set.

Power spectra of gridded gravity anomalies were computed by multitaper spectral estimation. A

rectangular area having an extension of 160 km x 300 km in the central part of the country where no

extrapolation was necessary with a grid spacing of 2 km was selected for the computations. Degree

variances of point gravity anomalies were computed using the covariance function of residual gravity

anomalies. A second order Gauss Markov model was fitted to empirical covariances (Tabl. 3) and

degree variances were determined using Eq. (3). Fig. 1. shows the spectra of the gravitational signal

in terms of gravity anomaly degree variances. Power spectra of measured anomalies shows similar

decay as EGM2008 degree variances in spherical harmonic band approximately 1000 < l < 2000, the

differences in amplitude are negligible. The recoverable spectral band of degree variances due to

discretization is about 1000 < l < 2200 for point value anomalies, and 1000 < l < 10000 for mean

anomalies respectively. The difference between degree variances computed from point and mean

anomalies is in order of 10 3 in the common spectral bands, hence for further analysis degree

variances derived from mean anomalies were used. The decay of the Tscherning Rapp model

variances by the increasing number of degree is slower, which could be attributed to the fact that

this model is based on free air gravity anomalies hence some portion of the signal amplitude is

generated by topographic masses. For comparison the average topography reduced model

developed by Flury (2006) is also shown which follows a simple power law:

. (9)

This model was derived using residual gravity anomalies from 13 data sets all around the word.

EIGEN CG01C model to l,m = 360 and RTM gravity anomalies were used to remove trend from data.



Fig. 1. shows that there is a good accordance between Flury�s model and the degree variances

computed from mean gravity anomalies. Tabl. 2. shows the spectral characteristics of mean gravity

anomalies at different spectral bands. It can be seen that above the full spectral content of

EGM2008 about 2.33 mGal gravity power remains.

Please insert Fig. 1. near here

Please insert Tabl. 2. near here

Due to the scarcity of data points, interpolation of vertical deflections onto a regular grid can lead to

spurious signal, hence degree variances of vertical deflections were determined from the covariance

functions. First EGM2008 deflections of the vertical computed to l,m = 360 was removed from

measured deflections then a second order Gauss Markov model was fitted to the empirical

covariance functions (Tabl. 3.). Analytical covariances were transformed to degree variances using

Eq. (3). According to the average extension and point distance of the vertical deflection data set

reasonable degree variances are in spectral band 360 < l < 1500 approximately. As Fig. 2. shows the

computed power spectra are in good accordance with EGM2008 degree variances in spectral band of

about 1100 < l < 1500. Unfortunately, the data sampling is not sufficient to study higher wavelength

constituents of the gravitational signal. The global Tscherning Rapp model based on 1° equal area

free air anomalies therefore the model gives only approximation for the decay of the gravitational

field for higher frequencies. Nevertheless, this model could give a coarse assessment about the

spectral behaviour of local gravity field quantities.

Please insert Fig. 2. near here

Please insert Tabl. 3. near here

Torsion balance developed by the Hungarian physicist baron Lorand Eötvös measures some

components of the gravity gradient tensor. In this study the spectral properties of horizontal gravity

gradients ( ) which characterize the non parallelism of level surfaces are investigated. Since

these quantities are azimuth dependent, therefore measurements are usually transformed to other

type of gravity field quantity, e.g. to vertical gravity gradient, which is an isotropic quantity and easier

to handle. First, the long wavelength component of the gravity field was removed from terrain

effect reduced horizontal gradients using EGM2008 to l,m = 360. Since torsion balance

measurements are given at irregularly spaced points and further use of these quantities in geoid

modelling needs the tools of Fourier transform therefore measurements were gridded onto a grid



which size is 3°x 5.7° and its resolution is 1� x 1.5�. Synthetic horizontal gravity gradient data derived

from EGM2008 model with spectral content of l,m = 360 2160 were used to supply grid nodes with

no data. The transformation was solved by a convolution integral (Eötvös integral for Tzz) using the

kernel function defined by Tóth et al. (2005). The Eötvös integral was evaluated by a 1D FFT

algorithm implemented in an in house software. The spectral behaviour of vertical gradient was

determined via PSD estimation and is shown in Fig. 3. Computed vertical gradient has more signal

power than EGM2008 model in spectral band l,m = 1000 2160 and about l = 2500 the gradient

spectrum is quickly damped and the signal amplitude remains well below 0.1 E unit at very high

frequencies. Since the accuracy of gravity gradients measured by a torsion balance is a few E unit in

favourable circumstances (Völgyesi 2001) it means that statistically the integral gives low signal to

noise ratio for high order terms in its numerical solution applied. Further numerical studies on the

behaviour of the kernel function is needed, since it is rather singular near the computation point, e.g.

kernel value of Stokes�s function for 1� spherical distance is S( = 1� ) = 6,898, while the

corresponding value for Eötvös kernel is Ezz( = 1� ) =23,639,643. Mean kernel computation strategy

investigated by Hirt et al. (2011) would probably benefit the numerical evaluation of Eötvös integral.

Please insert Fig. 3. near here

4.2 Covariance analysis

Covariance function represents the statistical correlation between data points distributed in space.

Autoovariance function (ACF) of geoid height determined from (1) astronomical vertical deflections

and from (2) gravity anomaly was compared to covariance of EGM2008 geoid height in order to

determine wavelength bands where geoid height derived from terrestrial data and the model

describe mutual gravity field structures.

An astrogeodetic geoid was derived from the available astronomical deflections of the vertical data.

The simple trigonometrical equation of astronomical leveling providing the undulation change N in

function of the deflection data ( ) and the point distance (d) was applied on the

triangular network of the deflection points. This set of equations was solved by using the norm of

least squares with a weighting system of 1/d2 and fixing one undulation value in the central part of

the network. The a posteriori RMS of the unit weight measurement was 0.14 m which indicates

significant signal loss resulted in by the under sampling of the deflection field. The EGM2008 geoid

(l,m=2160) was also determined at the astrogeodetic points and the 1st degree trend surfaces

(planes) were removed from both of them. Assuming isotropy the 1D ACF s of the residual



undulations were computed and compared. Fig. 4. shows that statistically there is a very good

agreement between the two undulation sets since the shape of the ACF s are very similar. The

variances, however, indicate some systematical difference because the variance of residual astro

geoid (0.51 m2) is significantly higher then that of the residual EGM2008 geoid (0.39 m2). This "scale"

difference is also justified by the simple regression plot displayed in Fig. 5. The slope coefficient

( NEGM2008/ Nastro) of the regression line is +0.70 +/ 0.03. Both ACFs show a deterministic periodicity

dominant at about 190 km wavelength. It is also clear that some low degree harmonics the

wavelength of which are comparable to the extension of the area investigated influences the shape

of ACFs (i.e. those do not tend to zero by the increase of distance) since the reduction of data by a

fitted plane surface does not removes them completely. Because of the small number of

astrogeodetic points (138) the consistency of ACF estimation was checked on a bigger number (935)

of EGM2008 residual undulations. As one can see from Fig. 6. the number of points does not

influence either the shape or the variance of the ACF significantly. It means that even this small

number of astrogeodetic deflection of the vertical data represents reasonably the structure of the

gravity field at the wavelengths below 200 km (l,m > 200) except the scale/variance difference and

the very low degree constituents sufficiently modelled by a locally fitted planar surface.

Please insert Figs. 4 6. near here.

Regarding the gravity anomaly, geoid height was computed via the well known Stokes convolution

integral from block mean gravity data of Eq. (8). Opposite to the astronomical leveling which utilizes

purely terrestrial measurements, evaluation of surface integrals based on a relatively small data set

inherently assume the use of synthetic data either by extension data set with synthetic data or by

computation of truncation coefficient to reduce truncation effect. In this sense geoid determined

from gravity data could not be considered as a fully EGM2008 independent quantity since gravity

from EGM2008 was utilized outside the border of the country, however our investigations regarding

the covariance analysis rely exclusively to the previously selected rectangular test area in the central

part of the country. The ACF of gravimetric geoid height was computed by radially averaging the

isotrop 2D planar ACF obtained by spectral method (Schwarz et al 1990). For comparison EGM2008

geoid height covariances was also derived with spectral content of l,m = 600 � 2160. ACFs of

gravimetric geoid height and EGM2008 model (Fig. 7.) show similar characteristics as astrogeodetic

and EGM2008 covariances (Fig. 4.). Systematic differences in variances which were manifested

between astrogeodetic and EGM2008 geoid variances are also perceptible between gravimetric and

EGM2008 geoid. Since terrestrial gravity data were reduced according to Eq. (8) with EGM2008 data

with spectral content l,m = 2 600 the variances have smaller amplitude and the correlation length



compared to the trend surface of a simple plane applied in case of astrogeodetic geoid height. Both

ACFs show periodicity at wavelength about 70 80 km hence small scale gravity field structures

(wavelength below appr. 80 km) are also represented in the global model.

Please insert Fig. 7. near here.

An another way to control the computed spectra in terms of residual geoid height prediction from

residual gravity anomaly, which can be regarded as local method to determine the quality of the

estimated spectra. The necessary auto and cross covariance functions were determined from the

mean gravity anomaly degree variances (gravity (AV) on Fig. 3.) since it is capable to recover the

gravity field spectral characteristics in a wide spectral band. The geoid gravity cross covariance

function was derived by transforming gravity degree variances using the relevant eigenvalues of the

defining operators. Degree variances can be transformed back to covariance function using the

inverse relationship of Eq. (3)

. (10)

A local covariance function was obtained by removing certain numbers of lower degree variances

(Lachapell 1975), i.e. set gravity coefficients to zero for l < 600. The corresponding covariance

functions are depicted in Fig. 8., their parameters are given in Tabl. 3.

Please insert Fig. 8. near here

As Fig. 8. shows both functions are smooth and have small correlation distances and approach zero

quite fast, hence here was no need to fit an analytical model to empirical covariances. Residual geoid

heights ( ) were predicted from residual gravity anomalies ( gres) according to the basic equation

of LS prediction

(11)

where denotes cross covariances between geoid and gravity, is the auto covariance

matrix of gravity. Geoid height was computed at 170 GPS/levelling points in the western part of the

country, where high precision GPS/levelling data is available. Residual point value gravity anomalies

were utilized for the numerical tractability of Eq. (11). The noise covariance matrix of g was



set to zero since point value gravity measurements have high accuracy and we simply wanted to test

the capability of the method. Predicted residual geoid heights ( ) were compared with the

difference between measured and EGM2008 with spectral content of l,m = 2 600 geoid heights

. (12)

A sample cut of predicted and measured geoid heights is shown in Fig.9., the statistics of

each quantity are given in Tabl.4. The standard deviation of residual geoid heights is ± 6.1 cm,

whereas result for predicted values is ± 4.4 cm, which could be assigned to the smoothing property

of collocation. As Fig. 9. shows residual and predicted quantities are in good agreement.

Please insert Fig. 9. near here

Please insert Tabl. 4. near here

5. Combination of EGM and terrestrial measurements

In gravity field modelling spectral combination technique (Sjöberg 1980, Wenzel 1981) blends

heterogeneous data sets by assigning spectral weights of their respective Laplace surface harmonics

at each spectral degree l. It would be rather beneficial to utilize the spectral sensitivity of gravity

related measurements in geoid determination, i.e. in which frequency band have their main power.

Kern et al. (2003) developed a so called quasi deterministic weighting approach, which uses the

spectra of measured gravity related quantities to determine the spectral weights. The main idea

behind this method is that error degree variances of terrestrial measurements can be approximated

with

(13)

the absolute value of the difference between degree variances derived from the measurements and

degree variances from an EGM or from an analytical model for higher spherical harmonic degrees.

Combining EGM and terrestrial measurements based on error degree variances,

where Gi denotes the ith terrestrial observation of gravity field functional, the larger weight is

assigned to the gravity field quantity that has smaller error. For the description of calculating

weights, the reader is referred to Kern et al. (2003). Kern et al. (2003) tested the proposed weighting

scheme on synthetic gravity related data only, combining EGM, gravity anomaly and gravity

disturbance at the long and medium wavelength frequencies. It would be worth to test the method



in practice with the available data sets, therefore EGM2008 as a state of the art global gravitational

model was combined with gravity and vertical gravity gradient. For the determination of spectral

weights degree variances of terrestrial measurements were transformed to potential degree

variances. Above the spectral content of EGM2008 the Tscherning Rapp model was used to feature

the gravitational signal in high frequency spectral domain. Since EGM2008 and Tscherning Rapp

degree variances do not describe the gravitational field seamless and due to the oscillation of signal

degree variances of EGM2008 it is preferable to use a smooth, continuous curve for gravity field

signal in the entire spectrum. Accordingly, a Tscherning Rapp type model was fitted to the EGM2008

degree variances. For a possible combination of measurements (Fig. 10.), EGM2008 is used

exclusively to spherical harmonic degree 1000, i.e. unit weight was assigned to EGM2008 and zero

weight to the measurements for degrees l = 2 1000. Above spectral degree l = 1000 the lower the

error according to Eq. (13), the larger weight is given. Weight of EGM2008 gradually decreases to

zero and naturally, above degree 2160 the weights allocated to EGM2008 are set to zero. Gravity

data has superior dominancy up to degree about 4000 compared to gravity gradient, while the high

frequency part of the gravity signal (above l = 4000) stems from vertical gradient in gravity field

modelling.

Please insert Fig. 11. near here

It is acknowledged that there exist other methods for the determination of spectral weights, relies on

the stochastic properties of measurements or using deterministic weighting approaches. The

interested reader should consult Featherstone (2013) for a comprehensive and complete overview of

the various weighting approaches and the resulted kernel modifications using Hotine integral.

The Wenzel type stochastic modification has a wide acceptance, for reference see the different

variants of the European Gravimetric (Quasi)geoid Model (Denker et al. 2009).

Regarding the great amount of surface gravity measurements in Hungary spectral combination

seems to be a versatile method to incorporate them in gravity field modelling. The quasi

deterministic weighting scheme facilitates to combine GGM and different kind of gravity field

measurements driven by their spectral characteristics.

6. Summary and outlook

In the present paper characteristics of the gravity field spectrum derived from different kind of

terrestrial measurements involved in Hungarian data sets were analyzed. The computed degree

variances were validated both in the frequency and the space domain. Both assessments showed



that the estimated degree variances are realistic and could be utilized to determine that in which

spectral band which kind of gravity field quantity should be applied for a high precision gravity field

modelling. Results of the quasi deterministic weighting approach show that the anticipated, the

higher the order of the gravity functional the higher the spectral sensitivity for high frequencies, rule

is valid. However, it should be emphasized that the sampling rate, i.e. discretisation of gravity field

observables should be consistent with the recoverable spectral bands to avoid aliasing of the gravity

signal. However, we think it is worth to determine how to combine global and local gravity data in a

complementary way using the spectral properties of the data. The practical test of geoid

determination using spectral combination with the proposed weight functions, i.e. integration of

spectral weights in the appropriate kernel functions, is left for a future investigation.

Acknowledgements: Mean gravity and torsion balance data sets provided by the Geological and
Geophysical Institute of Hungary are gratefully acknowledged.
This study was supported by the TAMOP 4.2.2.C�11/1/KONV 2012 0015 (Earth system) project
sponsored by the EU and European Social Foundation.



References

Alder, B. Fernbach, S. Rotenberg, M. Bolt, B. A. (1973) Methods in Computational Physics. Advances
in Research and Applications. Academic Press, New York San Francisco London

Denker H, Barriot J P, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyeres A, Marti U, Sarrailh
M, Tziavos IN (2009): The development of the European gravimetric geoid model EGG07. In:
Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer Verlag,
Berlin, Heidelberg, pp 177�186

Featherstone W.E. (2013): Deterministic, stochastic, hybrid and band limited modifications of
Hotine�s integral, Journal of Geodesy 87(5): 487�500.

Flury J. (2002): Schwerefeldfunktionale im Gebirge, Modellierungsgenauigkeit, Messpunktdichte und
Darstellungsfehler. DGK München

Flury J. (2006): Short wavelength spectral properties of the gravity field from a range of regional data
sets. Journal of Geodesy, 79: 624 640.

Forsberg R. (1984): Local covariance functions and density distributions. Reports of the department
of Geodetic Science and Surveying, Report No. 356.

Grant, F. S. and West, G. F. (1965). "Interpretation Theory in Applied Geophysics." MacGraw Hill,
New York
Hanssen A. (1997): Multidimensional multitaper spectral estimation. Signal Processing, 58: 327 332.

Hirt C., WE. Featherstone, SJ. Claessens (2011): On the accurate numerical evaluation of geodetic
convolution integrals. Journal of Geodesy 85(8): 519 538, doi: 10.1007/s00190 011 0451 5

Kern M., KP. Schwarz, N. Sneeuw (2003): A study on the combination of satellite, airborne and
terrestrial gravity data. Journal of Geodesy, 77: 217 225.

Kern M. (2003): An analysis of the combination and downward continuation of satellite. Airborne and
errestrial Gravity Data, Ph.D. Thesis. UCGE Report 30172, Dept. of Geomatics Engineering, University
of Calgary

Lachapelle G. (1975): Determination of the geoid using heterogeneous data. Mitteilungen der
geodätischen Institute der Technischen Universität Graz, Folge 19.

Papp (1993): Trend models in the least squares prediction of free air gravity anomalies. Periodica
Politechnica Ser. Civil Eng. Vol. 37. 109 130.

Parker, R. L. (1970). �The inverse problem of the electrical conductivity of the mantle.� Geophys. J.
Roy. Astron. Soc. 22, 121 138.

Parker R.L. The rapid calculation of potential anomalies. Geophys. J. R. astr. Soc. 1972;31:447 455.

Pavlis NK., SA. Holmes, SC. Kenyon, JK. Factor (2008): An Earth Gravitational Model
to Degree 2160: EGM2008, presented at the 2008 General Assembly of the European
Geosciences Union, held in Vienna, Austria



Slepian D. (1983): Some comments on Fourier analysis, uncertainty and modelling. SIAM Review, 25.,
3: 379 393.

Schwarz KP. (1984): Data types and their spectral properties. In: KP Schwarz (ed.), Proceedings of the
Beijing International summer school on local gravity field approximation, pp. 1 66, China.

Schwarz KP., MG. Sideris, R. Forsberg (1990): The use of FFT techniques in physical geodesy.
Geophys. J. Int. 100: 485 � 514.

Sjöberg LE. ( 1980): Least squares combination of satellite harmonics and integral formulas in
physical geodesy. Gerlands Beitr. Geophys., 89, 371 377.

Tóth Gy., J. Ádám, L. Földváry, IN. Tziavos, H. Denker (2005): Calibration/ validation of GOCE data by
terrestrial torsion balance observations. A Window on the Future of Geodesy, International
Association of Geodesy Symposia Volume 128, pp 214 219

Tscherning CC., RH. Rapp (1974): Closed covariance expressions for gravity anomalies, geoid
undulations, and deflections of the vertical implied by anomaly degree variance models. Report 208,
Department of Geodesy Science Ohio State University, Columbus

van Gelderen M., R. Rummel (2001): The solution of the general geodetic boundary problem by least
squares Journal of Geodesy 75: 1 11.

Voigt C., H. Denker (2007): A study of high frequency effects in gravity field modelling. Proceed. 1st
International Symposium of the International Gravity Field Service, �Gravity Field of the Earth�,
Harita Dergisi, Special Issue 18, pp. 342 347, Ankara, Turkey, 2007

Voigt C., H. Denker (2011): Validation of GOCE gravity field models by astrogeodetic vertical
deflections in Germany. Proceedings of the 4th International GOCE User Workshop, Munich, 31
March � 01 April, ESA Special Publication SP 696, CD ROM, 2011

Zhang K., WE. Featherstone (2004): Investigation of the roughness of the Australian gravity field
using statistical, graphical, fractal and Fourier power spectrum techniques. Survey Review, 37, 293.

Stoica P, R Moses (1997): Introduction to spectral analysis. Prentice Hall, p. 319.

Tscherning CC, Forsberg R, Knudsen P (1992) The GRAVSOFT package for geoid determination. Proc.
1. Continental Workshop on the Geoid in Europe, Prague, May 1992, pp 327�334, Research Institute
of Geodesy, Topography and Cartography, Prague

Vögyesi L (2001): Geodetic applications of torsion balance measurements in Hungary. Reports on
Geodesy, Warsaw University of Technology, Vol. 57, Nr. 2, pp. 203 212


















































     





































































 

 

      















   



  

    

    

















   



 

 

     















 



        




























   













   


















       
















          























Figure 1. Degree variances of gravity anomalies determined from mean [gravity(AV)] and point
anomalies [gravity(PTS)]. For comparison EGM2008, Tscherning-Rapp [T-
gravity anomaly degree variances are also shown, with error degree variances of EGM2008

Figure 2. Degree variances for measured vertical deflection components. Analytical Tscherning-Rapp
model is also depicted with EGM2008 signal and error degree variances

Figure 3. Degree variances of vertical gravity gradient with Tscherning-Rapp and EGM2008 vertical
gradient signal and error degree variances

Figure 4. Autocovariance function of astrogeodetic geoid as well as EGM2008 geoid height.
Astrogeodetic solution based on 138 astrogeodetic measurements. A fitted plane was removed to
detrend both data

Figure 5. Scatter plot of astrogeodetic and EGM2008 geoid height

Figure 6. Geoid ACF of EGM2008 geoid heights computed at 935 points to control and verify the
shape of ACF in Fig. 4.

Figure 7. ACFs of gravimetric and EGM2008 geoid heights. The long wavelength part of the
gravitational field described by EGM2008 to spherical harmonic degree l = 600 was removed

Figure. 8. Local gravity ( g ACF) and geoid- gravity (N- g CCF) covariance functions calculated from
mean gravity anomaly [gravity(AV)] degree variances using Eq. (9)

Figure 9. Test example of predicted and residual geoid heights. Gravity anomaly points are marked by
dots, triangle GPS/levelling station. Bars show positive (up) and negative (down) geoid heights
respectively. Orange and green colours located on the left side of GPS/levelling marker denote Nres
(Eq. (12)), whereas red and blue coloured columns located on right side depict predicted (Eq.
(11)) geoid height

Figure. 10. Weighting functions of EGM2008, gravity anomaly and vertical gravity gradient using
quasideterministic (Kern et al. 2003) weighting approach



Table. 1.  Eigenvalues (in spectral domain) of gravity field quantities related to the disturbing
potential by linear operators (van Gelderen and Rummel 2001)

functional eigenvalue
gravity anomaly

vertical deflection

horizontal gradients



Table 2. Spectral sensitivity of gravity anomaly in various spectral bands derived from EGM2008
model, measured mean gravity data and Tscherning-Rapp (T-R) degree variance model. Unit mGal

spectral band EGM2008 gravity T-R
721-2160 11.68 12.20 32.65
721-1080 4.74 3.15 10.93
1081-1140 3.01 2.98 8.62
1141-1800 2.20 2.10 7.10
1801-2160 1.73 1.64 6.00
2161-10000 - 2.33 11.08



Table 3.  Defining parameters: variance (C0) and correlation length of model and empirical auto and
cross covariances used in this study

C0 correlation
length[km]

unit of C0

2nd order
Gauss- Markov

gravity (PTS) 99.52 8.3 mGal2

defl. N-S 3.07 7.3 arcsec2

defl. E-W 2.33 7.5 arcsec2

empirical
(using Eq. 10)

gravity 34.22 6.9 mGal2

gravity- geoid 0.185 8.4



Table 4. Statistics of residual geoid heights [m] in sense of Eqs. (10) and (11)

(Eq. (11))
(bias was removed)

(Eq. (12))

mean 0.548 -0.006
std. ± 0.061 ± 0.044
min. -0.191 -0.116
max. 0.169 0.105


