9 research outputs found

    Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders

    No full text
    For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, β-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, β-hydroxybutyrylation. β-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor

    Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders

    No full text
    For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, β-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, β-hydroxybutyrylation. β-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor

    Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance

    No full text
    International audienceMitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains between both organelles involved in Ca(2+) exchange, through the voltage-dependent anion channel (VDAC)-1/glucose-regulated protein 75 (Grp75)/inositol 1,4,5-triphosphate receptor (IP3R)-1 complex, and regulating energy metabolism. Whereas mitochondrial dysfunction, ER stress, and altered Ca(2+) homeostasis are associated with altered insulin signaling, the implication of MAM dysfunctions in insulin resistance is unknown. Here we validated an approach based on in situ proximity ligation assay to detect and quantify VDAC1/IP3R1 and Grp75/IP3R1 interactions at the MAM interface. We demonstrated that MAM integrity is required for insulin signaling and that induction of MAM prevented palmitate-induced alterations of insulin signaling in HuH7 cells. Disruption of MAM integrity by genetic or pharmacological inhibition of the mitochondrial MAM protein, cyclophilin D (CypD), altered insulin signaling in mouse and human primary hepatocytes and treatment of CypD knockout mice with metformin improved both insulin sensitivity and MAM integrity. Furthermore, ER-mitochondria interactions are altered in liver of both ob/ob and diet-induced insulin-resistant mice and improved by rosiglitazone treatment in the latter. Finally, increasing organelle contacts by overexpressing CypD enhanced insulin action in primary hepatocytes of diabetic mice. Collectively, our data reveal a new role of MAM integrity in hepatic insulin action and resistance, providing a novel target for the modulation of insulin action

    Adipose Tissue-Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation

    No full text
    International audienceObesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipose-derived stem cells (ASCs) from obese individuals with MNCs and analyzed their reciprocal behavior. Presence of ASCs 1) enhanced interleukin (IL)-17A secretion by Th17 cells, 2) inhibited gamma-interferon and tumor necrosis factor alpha secretion by Th1 cells, and 3) increased monocyte-mediated IL-1beta secretion. IL-17A secretion also occurred in stromal vascular fractions issued from obese but not lean individuals. Th17 polarization mostly depended on physical contacts between ASCs and MNCs-with a contribution of intracellular adhesion molecule-1-and occurred through activation of the inflammasome and phosphatidylinositol 3-kinase pathways. ASCs favored STAT3 over STAT5 transcription factor binding on STAT binding sites within the IL-17A/F gene locus. Finally, conditioned media from activated ASC-MNC cocultures inhibited adipocyte differentiation mRNA markers and impaired insulin-mediated Akt phosphorylation and lipolysis inhibition. In conclusion, we report that obese- but not lean-derived ASCs induce Th17 promotion and monocyte activation. This proinflammatory environment, in turn, inhibits adipogenesis and adipocyte insulin response. The demonstration of an ASC-Th17-monocyte cell axis reveals a novel proinflammatory process taking place in AT during obesity and defines novel putative therapeutic targets

    Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging

    No full text
    International audienceCellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging

    Nicotinic acid effects on insulin sensitivity and hepatic lipid metabolism: an in vivo to in vitro study

    No full text
    International audienceOur aim was to characterize the effects and the underlying mechanisms of the lipid-regulating agent Niaspan((R)) on both insulin action and triglyceride decrease in 20 nondiabetic, dyslipidemic men with metabolic syndrome receiving Niaspan((R)) (2 g/day) or placebo for 8 weeks in a randomized, cross-over study. The effects on plasma lipid profile were characterized at the beginning and the end of each treatment period; insulin sensitivity was assessed using the 2-step euglycemic hyperinsulinemic clamp and VLDL-triglyceride turnover by measuring plasma glycerol enrichment, both at the end of each treatment period. The mechanism of action of nicotinic acid was studied in HuH7 and mouse primary hepatocytes. Lipid profile was improved after Niaspan((R)) treatment with a significant-28% decrease in triglyceride levels, a+17% increase in HDL-C concentration and unchanged levels of fasting nonesterified fatty acid. VLDL-tri-glyceride production rate was markedly reduced after Niaspan((R)) (-68%). However, the treatment induced hepatic insulin resistance, as assessed by reduced inhibition of endogenous glucose production by insulin (0.7+/-0.4 vs. 1.0+/-0.5 mg/kg . min, p\textless0.05) and decrease in fasting hepatic insulin sensitivity index (4.8+/-1.8 vs. 3.2+/-1.6, p\textless0.05) in the Niaspan((R)) condition. Nicotinic acid also reduced insulin action in HuH7 and primary hepatocytes, independently of the activation of hepatic PKCepsilon. This effect was associated with an increase in diacylglycerol and a decrease in tri-glyceride contents that occurred in the absence of modification of DGAT2 expression and activity. Eight weeks of Niaspan((R)) treatment in dyslipidemic patients with metabolic syndrome induce hepatic insulin resistance. The mechanism could involve an accumulation of diacylglycerol and an alteration of insulin signaling in hepatocytes

    Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis

    No full text
    International audienceBACKGROUND & AIMS: Hepatic insulin resistance in obesity and type 2 diabetes was recently associated with endoplasmic reticulum (ER)-mitochondria miscommunication. These contact sites (mitochondria-associated membranes: MAMs) are highly dynamic and involved in many functions. Up to now, it is not clear if MAM miscommunication could have a causal role in hepatic insulin resistance and steatosis. We therefore aimed to determine whether and how organelle miscommunication plays a role in the onset and progression of hepatic metabolic impairment. METHODS: We analyzed hepatic ER-mitochondria interactions and calcium exchange in diet-induced obese mice in a time-dependent and reversible manner, and investigated causality in hepatic metabolic alterations by expressing a specific organelle spacer or linker in mouse liver, using adenovirus. RESULTS: Disruption of ER-mitochondria interactions and calcium exchange is an early event preceding hepatic insulin resistance and steatosis in diet-induced obese mice. Interestingly, an 8-week reversal diet concomitantly reversed hepatic organelle miscommunication and insulin resistance in obese mice. Mechanistically, disrupting structural and functional ER-mitochondria interactions through the hepatic overexpression of the organelle spacer FATE1 was sufficient to impair hepatic insulin action and glucose homeostasis. In addition, FATE1-mediated organelle miscommunication disrupted lipid-related mitochondrial oxidative metabolism and induced hepatic steatosis. Conversely, reinforcement of ER-mitochondria interactions through hepatic expression of a synthetic linker prevented diet-induced glucose intolerance after 4 weeks' overnutrition. Importantly, ER-mitochondria miscommunication was confirmed in the liver of obese patients with type-2 diabetes, and correlated with glycemia, HbA1c and HOMA-IR index. CONCLUSIONS: ER-mitochondria miscommunication is an early causal trigger of hepatic insulin resistance and steatosis, and can be reversed by switching to a healthy diet. Thus, targeting MAMs could contribute to restoring metabolic homeostasis. LAY SUMMARY: The literature suggests that interactions between endoplasmic reticulum (ER) and mitochondria could play a dual role in hepatic insulin resistance and steatosis during chronic obesity. The present study reappraised time-dependent regulation of hepatic ER-mitochondria interactions and calcium exchange in diet-induced obese mice and their causal role in hepatic insulin resistance and steatosis. We show that organelle miscommunication is an early causal trigger of hepatic insulin resistance and steatosis, and can be improved by nutritional strategies
    corecore