8,141 research outputs found

    Periodic orbits for classical particles having complex energy

    Full text link
    This paper revisits earlier work on complex classical mechanics in which it was argued that when the energy of a classical particle in an analytic potential is real, the particle trajectories are closed and periodic, but that when the energy is complex, the classical trajectories are open. Here it is shown that there is a discrete set of eigencurves in the complex-energy plane for which the particle trajectories are closed and periodic.Comment: 12 pages, 9 figure

    The influence of organic and conventional production on yield and quality of carrots

    Get PDF
    Although numerous experiments have been carried out to compare nutrient and contaminant contents of organically and conventionally produced vegetables, further research is recommended (Rembialkovska 2007, Hoefkens et al. 2009). This study contributes to the investigations of the levels of various nutrients in organic and conventional carrots. The trial data of 3 years were contradictory for yield and quality. The yields of organic trial were not significantly lower compared to conventional trial. Longer trial period is needed to conclude the role of weather conditions, cultivation regime (used herbicides, insecticides and fungicides) and their interaction

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Spatially resolved spectroscopy of Coma cluster early-type galaxies IV. Completing the dataset

    Get PDF
    The long-slit spectra obtained along the minor axis, offset major axis and diagonal axis are presented for 12 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. The rotation curves, velocity dispersion profiles and the H_3 and H_4 coefficients of the Hermite decomposition of the line of sight velocity distribution are derived. The radial profiles of the Hbeta, Mg, and Fe line strength indices are measured too. In addition, the surface photometry of the central regions of a subsample of 4 galaxies recently obtained with Hubble Space Telescope is presented. The data will be used to construct dynamical models of the galaxies and study their stellar populations.Comment: 40 pages, 7 figures, 6 tables. Accepted for publication in ApJ

    PT-symmetry breaking in complex nonlinear wave equations and their deformations

    Get PDF
    We investigate complex versions of the Korteweg-deVries equations and an Ito type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic, elliptic and soliton solutions for these models and focus in particular on physically feasible systems, that is those with real energies. The reality of the energy is usually attributed to different realisations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv policy; higher resolutions maybe obtained from the authors upon request

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201

    Chaotic systems in complex phase space

    Full text link
    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.Comment: 22 page, 16 figure

    Asymptotics of Expansion of the Evolution Operator Kernel in Powers of Time Interval Δt\Delta t

    Full text link
    The upper bound for asymptotic behavior of the coefficients of expansion of the evolution operator kernel in powers of the time interval \Dt was obtained. It is found that for the nonpolynomial potentials the coefficients may increase as n!n!. But increasing may be more slow if the contributions with opposite signs cancel each other. Particularly, it is not excluded that for number of the potentials the expansion is convergent. For the polynomial potentials \Dt-expansion is certainly asymptotic one. The coefficients increase in this case as Γ(nL2L+2)\Gamma(n \frac{L-2}{L+2}), where LL is the order of the polynom. It means that the point \Dt=0 is singular point of the kernel.Comment: 12 pp., LaTe

    Bias of Maximum-Likelihood estimates in logistic and Cox regression models: A comparative simulation study

    Get PDF
    Parameter estimates of logistic and Cox regression models are biased for finite samples. In a simulation study we investigated for both models the behaviour of the bias in relation to sample size and further parameters. In the case of a dichotomous explanatory variable x the magnitude of the bias is strongly influenced by the baseline risk defined by the constants of the models and the risk resulting for the high risk group. To conduct a direct comparison of the bias of the two models analyses were based on the same simulated data. Overall, the bias of the two models appear to be similar, however, the Cox model has less bias in situations where the baseline risk is high

    The GL 569 Multiple System

    Full text link
    We report the results of high spectral and angular resolution infrared observations of the multiple system GL 569 A and B that were intended to measure the dynamical masses of the brown dwarf binary believed to comprise GL 569 B. Our analysis did not yield this result but, instead, revealed two surprises. First, at age ~100 Myr, the system is younger than had been reported earlier. Second, our spectroscopic and photometric results provide support for earlier indications that GL 569 B is actually a hierarchical brown dwarf triple rather than a binary. Our results suggest that the three components of GL 569 B have roughly equal mass, ~0.04 Msun.Comment: 29 pages, 10 figures, accepted for publication in the Astrophysical Journal; minor corrections to Section 5.1; changed typo in 6.
    corecore