We investigate complex versions of the Korteweg-deVries equations and an Ito
type nonlinear system with two coupled nonlinear fields. We systematically
construct rational, trigonometric/hyperbolic, elliptic and soliton solutions
for these models and focus in particular on physically feasible systems, that
is those with real energies. The reality of the energy is usually attributed to
different realisations of an antilinear symmetry, as for instance PT-symmetry.
It is shown that the symmetry can be spontaneously broken in two alternative
ways either by specific choices of the domain or by manipulating the parameters
in the solutions of the model, thus leading to complex energies. Surprisingly
the reality of the energies can be regained in some cases by a further breaking
of the symmetry on the level of the Hamiltonian. In many examples some of the
fixed points in the complex solution for the field undergo a Hopf bifurcation
in the PT-symmetry breaking process. By employing several different variants of
the symmetries we propose many classes of new invariant extensions of these
models and study their properties. The reduction of some of these models yields
complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv
policy; higher resolutions maybe obtained from the authors upon request