4,404 research outputs found

    Systematical Approach to the Exact Solution of the Dirac Equation for A Special Form of the Woods-Saxon Potential

    Get PDF
    Exact solution of the Dirac equation for a special form of the Woods-Saxon potential is obtained for the s-states. The energy eigenvalues and two-component spinor wave functions are derived by using a systematical method which is called as Nikiforov-Uvarov. It is seen that the energy eigenvalues strongly depend on the potential parameters. In addition, it is also shown that the non-relativistic limit can be reached easily and directly.Comment: 10 pages, no figures, submitted for Publicatio

    Screened alpha decay in dense astrophysical plasmas and magnetars

    Full text link
    This paper shows that ultrastrong magnetic fields (such as those of magnetars) and dense astrophysical plasmas can reduce the half life of alpha decaying nuclei by many orders of magnitude. In such environments the conventional Geiger-Nuttall law is modifed so that all half lives are shifted to dramatically lower values. Those effects, which have never been investigated before, may have significant implications on the universal abundances of heavy radioactive elements and the cosmochronological methods that rely on them.Comment: 15 RevTex pages, 3 ps figures (minor revision). This work was presented during the conference ''Supernova, 10 years of SN1993J'', April 2003, Valencia, Spain. Accepted for publication in Phys.Rev.

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Hyperspherical partial wave theory applied to electron hydrogen-atom ionization calculation for equal energy sharing kinematics

    Get PDF
    Hyperspherical partial wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of R\"oder \textit {et al} [51] and with the latest theoretical results of the ECS and CCC calculations [29] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large Θab\Theta_{ab} geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [35], it may be said that the hyperspherical partial wave theory is quite appropriate for the description of ionization events of electron-hydrogen type systems. It is also clear that the present approach in the implementation of the hyperspherical partial wave theory is very appropriate.Comment: 16 pages, 9 figures, LaTeX file and EPS figures. To appear in Phys. Rev.

    Solutions of the Faddeev-Yakubovsky equations for the four nucleons scattering states

    Full text link
    The Faddeev-Yakubowsky equations in configuration space have been solved for the four nucleon system. The results with an S-wave interaction model in the isospin approximation are presented. They concern the bound and scattering states below the first three-body threshold. The elastic phase-shifts for the N+NNN reaction in different (S,TS,T) channels are given and the corresponding low energy expansions are discussed. Particular attention is payed to the n+t elastic cross section. Its resonant structure is well described in terms of a simple NN interaction. First results concerning the S-matrix for the coupled N+NNN-NN+NN channels and the strong deuteron-deuteron scattering length are obtained.Comment: latex.tar.gz, 36 pages, 10 figures, 11 tables. To be published in Physical Review

    VHMPID: a new detector for the ALICE experiment at LHC

    Full text link
    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference

    Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams

    Get PDF
    We report on the response of a prototype CMS hadron calorimeter module to charged particle beams of pions, muons, and electrons with momenta up to 375 GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. The effects of a magnetic field of up to 3 Tesla on the response of the calorimeter to muons, electrons, and pions are presented, and the effects of an upstream lead tungstate crystal electromagnetic calorimeter on the linearity and energy resolution of the combined calorimetric system to hadrons are evaluated. The results are compared with Monte Carlo simulations and are used to optimize the choice of total absorber depth, sampling frequency, and longitudinal readout segmentation.Comment: 89 pages, 41 figures, to be published in NIM, corresponding author: P de Barbaro, [email protected]

    Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    Get PDF
    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848
    corecore