38 research outputs found

    Monitoring Temperatures of Tires Using Luminescent Materials

    Get PDF
    A method of noncontact, optical monitoring of the surface temperature of a tire has been devised to enable the use of local temperature rise as an indication of potential or impending failures. The method involves the use of temperature-sensitive paint (or filler): Temperature-sensitive luminescent dye molecules or other luminescent particles are incorporated into a thin, flexible material coating the tire surface of interest. (Alternatively, in principle, the luminescent material could be incorporated directly into the tire rubber, though this approach has not yet been tested.) The coated surface is illuminated with shorter-wavelength light to excite longer-wavelength luminescence, which is observed by use of a charge-coupled-device camera or a photodetector (see Figure 1). If temporally constant illumination is used, then the temperature can be deduced from the known temperature dependence of the intensity response of the luminescence. If pulsed illumination is used, then the temperature can be deduced from the known temperature dependence of the time or frequency response of the luminescence. If sinusoidally varying illumination is used, then the temperature can be deduced from the known temperature dependence of the phase response of the luminescence. Unlike a prior method of monitoring the temperature at a fixed spot on a tire by use of a thermocouple, this method is not restricted to one spot and can, therefore, yield information on the spatial distribution of temperature: in particular, it enables the discovery of newly forming hot spots where damage may be starting. Also unlike in the thermocouple method, the measurements in this method are not vulnerable to breakage of wires in repeated flexing of the tire. Moreover, unlike in another method in which infrared radiation is monitored as an indication of surface temperature, the luminescence measurements in this method are not significantly affected by changes in infrared emissivity. This method has been demonstrated in application to the outside surface of a tire (see Figure 2), using both constant and pulsed light sources for illumination and cooled, slow-scan, gated CCD cameras for detection. For observing the temperature of the inside surface of a tire (this has not yet been done), it would probably be necessary to use fiber optics and/or windows for coupling excitation light into, and coupling luminescence out of, the interior volume

    Borescope Imaging System Developed for Luminescent Paint Measurements

    Get PDF
    The luminescent paint measurement technique utilizes a coating that is applied to a test article, allowing the air pressure or temperature of a surface to be measured. These coatings are commonly referred to as pressure- or temperature-sensitive paints. These paints are excited with short wavelength light and emit light at a longer wavelength. By measuring the change of intensity of the emitted light from a known reference condition, researchers can determine the pressure or temperature. The technique of measuring full-field surface pressure and temperatures using luminescent coatings has required a direct line-of-sight from the camera to the surface under study. In most experiments that have used pressure-or temperature-sensitive paints, the test surfaces are mounted so it is straightforward to position the camera and excitation source. In other cases, the luxury of having optical access through a window is not available or even possible. We developed a borescope imaging system to gain optical access in these confined areas. The commercially available 10-mm-diameter rigid borescope contains relay optics to transmit the detected light to a charge-coupled device (CCD) camera as well as an internal fiber-optic light guide to provide the excitation source for the luminescent coatings. The coupled light source can be continuous for the intensity method but also can be pulsed or have a variable intensity for a newer method of acquisition that measures the decay or phase lag of the emitted light. This type of borescope focuses the image directly on the CCD chip without using a fiber-optic relay, eliminating unwanted honeycomb patterns that are typical of fiber-optic type borescopes. This produces images of much higher clarity and uniformity, which are critical for acquiring accurate measurements from the luminescent coatings

    Temperature-Sensitive Coating Sensor Based on Hematite

    Get PDF
    A temperature-sensitive coating, based on hematite (iron III oxide), has been developed to measure surface temperature using spectral techniques. The hematite powder is added to a binder that allows the mixture to be painted on the surface of a test specimen. The coating dynamically changes its relative spectral makeup or color with changes in temperature. The color changes from a reddish-brown appearance at room temperature (25 C) to a black-gray appearance at temperatures around 600 C. The color change is reversible and repeatable with temperature cycling from low to high and back to low temperatures. Detection of the spectral changes can be recorded by different sensors, including spectrometers, photodiodes, and cameras. Using a-priori information obtained through calibration experiments in known thermal environments, the color change can then be calibrated to yield accurate quantitative temperature information. Temperature information can be obtained at a point, or over an entire surface, depending on the type of equipment used for data acquisition. Because this innovation uses spectrophotometry principles of operation, rather than the current methods, which use photoluminescence principles, white light can be used for illumination rather than high-intensity short wavelength excitation. The generation of high-intensity white (or potentially filtered long wavelength light) is much easier, and is used more prevalently for photography and video technologies. In outdoor tests, the Sun can be used for short durations as an illumination source as long as the amplitude remains relatively constant. The reflected light is also much higher in intensity than the emitted light from the inefficient current methods. Having a much brighter surface allows a wider array of detection schemes and devices. Because color change is the principle of operation, the development of high-quality, lower-cost digital cameras can be used for detection, as opposed to the high-cost imagers needed for intensity measurements with the current methods. Alternative methods of detection are possible to increase the measurement sensitivity. For example, a monochrome camera can be used with an appropriate filter and a radiometric measurement of normalized intensity change that is proportional to the change coating temperature. Using different spectral regions yields different sensitivities and calibration curves for converting intensity change to temperature units. Alternatively, using a color camera, a ratio of the standard red, green, and blue outputs can be used as a self-referenced change. The blue region (less than 500 nm) does not change nearly as much as the red region (greater than 575 nm), so a ratio of color intensities will yield a calibrated temperature image. The new temperature sensor coating is easy to apply, is inexpensive, can contour complex shape surfaces, and can be a global surface measurement system based on spectrophotometry. The color change, or relative intensity change, at different colors makes the optical detection under white light illumination, and associated interpretation, much easier to measure and interpret than in the detection systems of the current methods

    Monitoring Delamination of Plasma-Sprayed Thermal Barrier Coatings by Reflectance-Enhanced Luminescence

    Get PDF
    Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer

    Luminescent Paints Used for Rotating Temperature and Pressure Measurements on Scale-Model High-Bypass-Ratio Fans

    Get PDF
    NASA Lewis Research Center is a leader in the application of temperature- and pressuresensitive paints (TSP and PSP) in rotating environments. Tests were recently completed on several scale model, high-bypass-ratio turbofans in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel. Two of the test objectives were to determine the aerodynamic and acoustic performance of the fan designs. Using TSP and PSP, researchers successfully achieved fullfield aerodynamic loading profiles. The visualized loading profiles may help researchers identify factors contributing to the fans' performance and to the acoustic characteristics associated with the flow physics on the surface of the blades

    High-Temperature Sprayable Phosphor Coating Developed for Measuring Surface Temperatures

    Get PDF
    The use of phosphor thermography for noncontact temperature measurements in harsh environments has been proven over the last decade, but it has suffered from difficult application procedures such as vapor deposition or sputtering techniques. We have developed a high-temperature-sensitive paint that is easily applied with commercially available paint-spraying equipment and have successfully demonstrated it to temperatures up to 1500 C. Selected phosphors have also shown measurable signals to 1700 C, thus allowing a combination of phosphors to be used in high-temperature binders to make surface temperature measurements from ambient to over 1500 C. Phosphor thermography is an optical technique that measures the time response of fluorescence light, which is a function of the phosphor temperature. The phosphors are excited with short wavelength light (ultraviolet or blue), and they emit light at a longer wavelength. This technique has a benefit over other temperature measurements, such as thermocouples and infrared thermography, in difficult environments such as high blackbody backgrounds, vibration, flames, high electromagnetic noise, or where special windows may be needed. In addition, the sprayable phosphor paints easily cover large or complicated structures, providing full-surface information with a single measurement. Oak Ridge National Laboratories developed and tested the high-temperature binders and phosphors under the direction of the NASA Glenn Research Center. Refractory materials doped with rare earth metals were selected for their performance at high temperature. Survivability, adhesion, and material compatibility tests were conducted at high temperatures in a small furnace while the fluorescent response from the phosphors was being measured. A painted sample in a furnace with a clearly visible fluorescing dot excited by a pulsed laser is shown. Measuring the decay time of this fluorescence yields the surface temperature. One new paint was recently tested in a rocket test stand at Glenn. The floor of a square duct nozzle was painted, and full-field lifetime decay measurements were acquired for multiple firings of the rocket. Good agreement with predicted results was obtained, matching temperature gradients along the length of the nozzle and clearly showing shock structures. These good results were very satisfactory given that the measurements were made looking through the combustion plume. Infrared pyrometry was incapable of making the surface measurements because of the interference from the rocket exhaust, which contaminated the infrared signature

    Pressure-Sensitive Paint Applied to Ice Accretions

    Get PDF
    Aircraft icing occurs when a plane flies through a cloud of supercooled water droplets. When the droplets impinge on aircraft components, ice starts to form and accumulate. This accumulation of ice severely increases the drag and lift of the aircraft, and can ultimately lead to catastrophic failures and even loss of life. Knowledge of the air pressures on the surfaces of ice and models in wind tunnels allows researchers to better predict the effects that different icing conditions will have on the performance of real aircraft. The use of pressure-sensitive paint (PSP) has provided valuable information on similar problems in conventional wind tunnel testing. In NASA Lewis Research Center Icing Research Tunnel, Lewis researchers recently demonstrated the world s first application of PSP on actual ice formed on a wind tunnel model. This proof-of-concept test showed that a new paint formulation developed under a grant by the University of Washington adheres to both the ice shapes and cold aluminum models, provides a uniform coating that preserves the detailed ice shape structure, and responds to simulated pressure changes

    Microwave Sensor for Blade Tip Clearance and Structural Health Measurements

    Get PDF
    The use of microwave based sensors for the health monitoring of rotating machinery is being explored at the NASA Glenn Research Center. The microwave sensor works on the principle of sending a continuous signal towards a rotating component and measuring the reflected signal. The phase shift of the reflected signal is proportional to the distance between the sensor and the component that is being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in the rotating machinery. It is intended to use these probes in the hot sections of turbine engines for closed loop turbine clearance control and structural health measurements. Background on the sensors, an overview of their calibration and preliminary results from using them to make blade tip clearance and health measurements on a large axial vane fan will be presented

    Depth-Penetrating Measurements Developed for Thermal Barrier Coatings Incorporating Thermographic Phosphors

    Get PDF
    The insulating properties of thermal barrier coatings (TBCs) provide highly beneficial thermal protection to turbine engine components by reducing the temperature sustained by those components. Therefore, measuring the temperature beneath the TBC is critical for determining whether the TBC is performing its insulating function. Currently, noncontact temperature measurements are performed by infrared pyrometry, which unfortunately measures the TBC surface temperature rather than the temperature of the underlying component. To remedy this problem, the NASA Glenn Research Center, under the Information Rich Test Instrumentation Project, developed a technique to measure the temperature beneath the TBC by incorporating a thin phosphor layer beneath the TBC. By performing fluorescence decay-time measurements on light emission from this phosphor layer, Glenn successfully measured temperatures from the phosphor layer up to 1100 C. This is the first successful demonstration of temperature measurements that penetrate beneath the TBC. Thermographic phosphors have a history of providing noncontact surface temperature measurements. Conventionally, a thermographic phosphor is applied to the material surface and temperature measurements are performed by exciting the phosphor with ultraviolet light and then measuring the temperature-dependent decay time of the phosphor emission at a longer wavelength. The innovative feature of the new approach is to take advantage of the relative transparency of the TBC (composed of yttria-stabilized zirconia) in order to excite and measure the phosphor emission beneath the TBC. The primary obstacle to achieving depth-penetrating temperature measurements is that the TBCs are completely opaque to the ultraviolet light usually employed to excite the phosphor. The strategy that Glenn pursued was to select a thermographic phosphor that could be excited and emit at wavelengths that could be transmitted through the TBC. The phosphor that was selected was yttria doped with europia (Y2O3:Eu), which has a minor excitation peak at 532 nm (green) and an emission peak at 611 nm (red)--both are wavelengths that exhibit significant transmission through the TBC. The measurements were performed on specimens consisting of a 25- m-thick phosphor layer beneath a 100- m-thick TBC. The 532-nm (green) excitation light was provided by a frequency-doubled YAG:Nd (yttrium-aluminum-garnet:neodymium) laser, and the fluorescence decay time measurements were acquired with a modified Raman microscope. The preceding graph compares the intensity of the phosphor emission of the phosphor layer above the TBC versus that of the phosphor layer beneath the TBC. Although there was considerable attenuation of the phosphor signal (a factor of 30), the phosphor emission at the reduced intensity was more than sufficient to perform fluorescence decay time measurements. The following graph shows the fluorescence lifetime temperature dependency for the Y2O3:Eu phosphor layers both above and below the TBC. These curves show an excellent match and indicate that, despite the attenuation due to the overlying TBC, the phosphor layer beneath the TBC still functions as an effective temperature indicator

    Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    Get PDF
    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper
    corecore