28 research outputs found
Studying accelerated cardiovascular ageing in Russian adults through a novel deep-learning ECG biomarker
Background: A non-invasive, easy-to-access marker of accelerated cardiac ageing would provide novel insights into the mechanisms and aetiology of cardiovascular disease (CVD) as well as contribute to risk stratification of those who have not had a heart or circulatory event. Our hypothesis is that differences between an ECG-predicted and chronologic age of participants (δage) would reflect accelerated or decelerated cardiovascular ageing
Methods: A convolutional neural network model trained on over 700,000 ECGs from the Mayo Clinic in the U.S.A was used to predict the age of 4,542 participants in the Know Your Heart study conducted in two cities in Russia (2015-2018). Thereafter, δage was used in linear regression models to assess associations with known CVD risk factors and markers of cardiac abnormalities.
Results: The biomarker δage (mean: +5.32 years) was strongly and positively associated with established risk factors for CVD: blood pressure, body mass index (BMI), total cholesterol and smoking. Additionally, δage had strong independent positive associations with markers of structural cardiac abnormalities: N-terminal pro b-type natriuretic peptide (NT-proBNP), high sensitivity cardiac troponin T (hs-cTnT) and pulse wave velocity, a valid marker of vascular ageing.
Conclusion: The difference between the ECG-age obtained from a convolutional neural network and chronologic age (δage) contains information about the level of exposure of an individual to established CVD risk factors and to markers of cardiac damage in a way that is consistent with it being a biomarker of accelerated cardiovascular (vascular) ageing. Further research is needed to explore whether these associations are seen in populations with different risks of CVD events, and to better understand the underlying mechanisms involved
Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics.
The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination
Genomics of Plasmodium vivax in Colombia reveals evidence of local bottle-necking and inter-country connectivity in the Americas
Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P. vivax genomes collected between 2013 and 2017, we explored diversity and selection in two major foci of transmission: Chocó and Córdoba. Open-access data from other countries were used for comparative assessment of drug resistance candidates and to assess cross-border spread. Across Colombia, polyclonal infections were infrequent (12%), and infection connectivity was relatively high (median IBD = 5%), consistent with low endemicity. Chocó exhibited a higher frequency of polyclonal infections (23%) than Córdoba (7%), although the difference was not significant (P = 0.300). Most Colombian infections carried double pvdhfr (95%) and single pvdhps (71%) mutants, but other drug resistance mutations were less prevalent (< 10%). There was no evidence of selection at the pvaat1 gene, whose P. falciparum orthologue has recently been implicated in chloroquine resistance. Global population comparisons identified other putative adaptations. Within the Americas, low-level connectivity was observed between Colombia and Peru, highlighting potential for cross-border spread. Our findings demonstrate the potential of molecular data to inform on infection spread and adaptation
Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission
Machine-learning-derived heart and brain age are independently associated with cognition
Background and purpose: A heart age biomarker has been developed using deep neural networks applied to electrocardiograms. Whether this biomarker is associated with cognitive function was investigated. Methods: Using 12-lead electrocardiograms, heart age was estimated for a population-based sample (N = 7779, age 40–85 years, 45.3% men). Associations between heart delta age (HDA) and cognitive test scores were studied adjusted for cardiovascular risk factors. In addition, the relationship between HDA, brain delta age (BDA) and cognitive test scores was investigated in mediation analysis. Results: Significant associations between HDA and the Word test, Digit Symbol Coding Test and tapping test scores were found. HDA was correlated with BDA (Pearson's r = 0.12, p = 0.0001). Moreover, 13% (95% confidence interval 3–36) of the HDA effect on the tapping test score was mediated through BDA. Discussion: Heart delta age, representing the cumulative effects of life-long exposures, was associated with brain age. HDA was associated with cognitive function that was minimally explained through BDA
Machine-learning-derived heart and brain age are independently associated with cognition
BACKGROUND AND PURPOSE: A heart age biomarker has been developed using deep neural networks applied to electrocardiograms. Whether this biomarker is associated with cognitive function was investigated. METHODS: Using 12-lead electrocardiograms, heart age was estimated for a population-based sample (N = 7779, age 40-85 years, 45.3% men). Associations between heart delta age (HDA) and cognitive test scores were studied adjusted for cardiovascular risk factors. In addition, the relationship between HDA, brain delta age (BDA) and cognitive test scores was investigated in mediation analysis. RESULTS: Significant associations between HDA and the Word test, Digit Symbol Coding Test and tapping test scores were found. HDA was correlated with BDA (Pearson's r = 0.12, p = 0.0001). Moreover, 13% (95% confidence interval 3-36) of the HDA effect on the tapping test score was mediated through BDA. DISCUSSION: Heart delta age, representing the cumulative effects of life-long exposures, was associated with brain age. HDA was associated with cognitive function that was minimally explained through BDA
Genomics of Plasmodium vivax in Colombia reveals evidence of local bottle-necking and inter-country connectivity in the Americas
Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P. vivax genomes collected between 2013 and 2017, we explored diversity and selection in two major foci of transmission: ChocĂł and CĂłrdoba. Open-access data from other countries were used for comparative assessment of drug resistance candidates and to assess cross-border spread. Across Colombia, polyclonal infections were infrequent (12%), and infection connectivity was relatively high (median IBD = 5%), consistent with low endemicity. ChocĂł exhibited a higher frequency of polyclonal infections (23%) than CĂłrdoba (7%), although the difference was not significant (P = 0.300). Most Colombian infections carried double pvdhfr (95%) and single pvdhps (71%) mutants, but other drug resistance mutations were less prevalent (< 10%). There was no evidence of selection at the pvaat1 gene, whose P. falciparum orthologue has recently been implicated in chloroquine resistance. Global population comparisons identified other putative adaptations. Within the Americas, low-level connectivity was observed between Colombia and Peru, highlighting potential for cross-border spread. Our findings demonstrate the potential of molecular data to inform on infection spread and adaptation
A forward genetic screen reveals a primary role for Plasmodium falciparum Reticulocyte Binding Protein Homologue 2a and 2b in determining alternative erythrocyte invasion pathways.
Invasion of human erythrocytes is essential for Plasmodium falciparum parasite survival and pathogenesis, and is also a complex phenotype. While some later steps in invasion appear to be invariant and essential, the earlier steps of recognition are controlled by a series of redundant, and only partially understood, receptor-ligand interactions. Reverse genetic analysis of laboratory adapted strains has identified multiple genes that when deleted can alter invasion, but how the relative contributions of each gene translate to the phenotypes of clinical isolates is far from clear. We used a forward genetic approach to identify genes responsible for variable erythrocyte invasion by phenotyping the parents and progeny of previously generated experimental genetic crosses. Linkage analysis using whole genome sequencing data revealed a single major locus was responsible for the majority of phenotypic variation in two invasion pathways. This locus contained the PfRh2a and PfRh2b genes, members of one of the major invasion ligand gene families, but not widely thought to play such a prominent role in specifying invasion phenotypes. Variation in invasion pathways was linked to significant differences in PfRh2a and PfRh2b expression between parasite lines, and their role in specifying alternative invasion was confirmed by CRISPR-Cas9-mediated genome editing. Expansion of the analysis to a large set of clinical P. falciparum isolates revealed common deletions, suggesting that variation at this locus is a major cause of invasion phenotypic variation in the endemic setting. This work has implications for blood-stage vaccine development and will help inform the design and location of future large-scale studies of invasion in clinical isolates
Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16–75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35–53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival