349 research outputs found
vibration fatigue tests by tri axis shaker design of an innovative system for uncoupled bending torsion loading
Abstract An innovative system for bending-torsion fatigue tests by tri-axis shaker is designed and presented. The system mounts a cylindrical specimen with eccentric tip mass, excited by horizontal and vertical base accelerations. A lateral thin plate prevents specimen horizontal displacement and allows torsional and bending deformations to be controlled independently. A lumped-mass model is first used to verify if input accelerations and resultant dynamic forces, required in testing, comply with shaker specifications. A finite element model is then used to perform both modal and harmonic analyses, necessary to determine the system natural frequencies and the dynamic response under horizontal and vertical accelerations. Experimental measures on a prototype are finally used to gather preliminary information for validating the numerical model and to verify that the proposed testing system can control bending and torsion loadings independently
An efficient procedure to speed up critical plane search in multiaxial fatigue: Application to the Carpinteri-Spagnoli spectral criterion
A more efficient procedure is proposed to speed up the Carpinteri-Spagnoli (CS) algorithm in numerical computations. The goal is accomplished by deriving the exact solution for the spectral moments and expected maximum peak of normal/shear stress in any rotated plane orientation. The algorithm then avoid the use of “for/end” loops to identify the five rotations that locate the critical plane in CS method. The procedure is especially advantageous if applied to three-dimensional finite element analysis, in which the stress spectra in thousands of nodes need to be processed iteratively. The procedure is based on theoretical results that have, however, a more general validity, being applicable to any multiaxial criterion that makes use of angular rotations to identify the critical plane
Finite elements prediction of thermal stresses in work roll of hot rolling mills
AbstractA simplified numerical approach based on finite elements to compute thermal stresses occurring in work roll of hot rolling mills is here proposed. To decrease both the complexity of the analysis and the computational effort, this approach implements a plane finite element model of the work roll alone, loaded on its surface by the rotating thermal actions due to the cyclic sequence of the conductive heating caused by the contact with hot strip and cooling provided by water jets. Results from thermal analysis are preliminary compared to an analytical solution available in the literature and then applied as thermal input in the subsequent mechanical finite elements simulations, which provide thermal stress in the work roll and the elastic-plastic evolution of elements, close to the work roll surface
Sulla stima della vita a fatica di giunti saldati soggetti a carichi multiassiali ad ampiezza variabile
Nel presente articolo viene proposta una nuova metodologia di progettazione a fatica, basata sull’utilizzo del metodo delle Curve di Wöhler Modificate, per la previsione della vita a fatica di giunzioni saldate, sia in acciaio che in alluminio, soggette a carichi multiassiali ad ampiezza variabile. In particolare, il criterio delle Curve di Wöhler Modificate è stato applicato determinando l’orientazione del piano critico mediante il Metodo della Massima Varianza, ovvero definendo il piano critico come quello contenente la direzione che sperimenta la massima varianza della tensione tangenziale risolta. L’accuratezza della metodologia di progettazione a fatica proposta nella presente memoria è stata valutata mediante due serie di dati sperimentali di letteratura ottenute sollecitando, sia ad ampiezza costante che variabile, giunti saldati tubo-piastra in acciaio e lega di alluminio con carichi di flesso/torsione in fase e sfasati di 90°. Il criterio delle Curve di Wöhler Modificate, applicato in concomitanza con il Metodo della Massima varianza, si è dimostrato capace di fornisce stime accurate della durata a fatica anche in presenza di sollecitazioni multiassiali ad ampiezza variabile, e questo sia quando applicato in termini di tensioni nominali che in termini di tensioni di “hot-spot”
A numerical approach for static and dynamic analysis of deformable journal bearings
This paper presents a numerical approach for the static and dynamic analysis of
hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing
deformability on pressure distribution within oil film is investigated. An iterative algorithm
that couples Reynolds equation with a finite elements (FE) structural model is solved.
Viscosity-to-pressure dependency (Vogel-Barus equation) is also included. The deformed
lubrication gap and the overall stress state are obtained. Numerical results are presented with
reference to a typical journal bearing configuration at two different inlet oil temperatures.
Obtained results show the great influence of bearing components structural deformation on oil
pressure distribution, compared with results for ideally rigid components. In the second part, a
numerical approach based on perturbation method is used to compute stiffness and damping
matrices, which characterize the journal bearing dynamic behavior
Metal plasticity and fatigue at high temperature
In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue
Fracture, Fatigue, and Structural Integrity of Metallic Materials and Components Undergoing Random or Variable Amplitude Loadings
When quickly reviewing engineering and industrial fields, one often discovers that a
large number of metallic components and structures are subjected, in service, to random or variable amplitude loadings. The examples are many: vehicles subjected to loadings and vibrations caused by road irregularity and engine, structures exposed to wind, off-shore platforms undergoing wave-loadings, and so on. Just like constant amplitude loadings, random and variable amplitude loadings can make fatigue cracks initiate and propagate, even up to catastrophic failures. Engineers faced with the problem of estimating the structural integrity and the fatigue strength of metallic structures, or their propensity to fracture, usually make use of theoretical or experimental approaches, or both. Counting methods (e.g., rainflow) provide information on the fatigue cycles in the load, whereas damage accumulation laws (as the celebrated Palmgren–Miner linear rule) establish how to sum up the damage of each counted cycle. In structural integrity, this is named as the “time-domain” approach. Over recent years, the “frequency-domain” approach has also received increasing and widespread use, especially with random loadings; this approach estimates fatigue life based on load statistical properties represented, in the frequency domain, by a power spectral density. Neither of the previous approaches, however, can do without the support of experimental laboratory testing, which provides a means to collect material strength data under specific loading conditions, or to verify preliminary estimations. The purpose of this Special Issue is to collect articles aimed at providing an up-todate overview of approaches and case studies—theoretical, numerical or experimental—on several topics in the field of fracture, fatigue strength, and the structural integrity of metallic components subjected to random or variable amplitude loadings
A numerical approach for the analysis of deformable journal bearings
This paper presents a numerical approach for the analysis of hydrodynamic radial journal bearings. The effect of shaft and housing elastic deformation on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements structural model is solved. Temperature and pressure effects on viscosity are also included with the Vogel-Barus model. The deformed lubrication gap and the overall stress state were calculated. Numerical results are presented with reference to atypical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of elastic deformation of bearing components on oil pressure distribution, compared with results for ideally rigid components obtained by Raimondi and Boyd solution
numerical simulation of cyclic plasticity in mechanical components under low cycle fatigue loading accelerated material models
Abstract Numerical simulations of components subjected to low-cycle fatigue loading require an accurate modeling of the material cyclic plasticity behavior until complete stabilization. In some circumstances, especially in case of small plastic strains, it may happen that the material model needs a huge number of cycles to reach complete stabilization, which results into an unfeasible simulation time. An acceleration technique, based on a fictitious increase of the parameter that controls the speed of stabilization in the combined (kinematic and isotropic) model, may be used. To check the efficiency and the correctness of the acceleration technique, the case of a welded cruciform joint under low cycle fatigue, taken from the literature, is here considered. The joint can be analyzed with a two-dimensional finite element model, which permits a relatively fast simulation to be completed until stabilization even with a combined kinematic-isotropic plasticity model (reference case). A comparison of this reference case with accelerated models is performed. Results in term of equivalent total strain range show that the acceleration procedure does not alter the welded joint cyclic behavior at stabilization, whereas it drastically reduces the computational time
- …