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Abstract. A more efficient procedure is proposed to speed up the 

Carpinteri-Spagnoli (CS) algorithm in numerical computations. The goal is 

accomplished by deriving the exact solution for the spectral moments and 

expected maximum peak of normal/shear stress in any rotated plane 

orientation. The algorithm then avoid the use of “for/end” loops to identify 

the five rotations that locate the critical plane in CS method. The procedure 

is especially advantageous if applied to three-dimensional finite element 

analysis, in which the stress spectra in thousands of nodes need to be 

processed iteratively. The procedure is based on theoretical results that 

have, however, a more general validity, being applicable to any multiaxial 

criterion that makes use of angular rotations to identify the critical plane. 

1 Introduction 

Multiaxial spectral methods are a special class of fatigue criteria which characterize a 

multiaxial random stress in the frequency-domain through its Power Spectral Density 

(PSD) matrix [1]. This article, in particular, deals with the Carpinteri-Spagnoli (CS) 

spectral method, in which a sequence of five rotations (Fig. 1) is used to identify the critical 

plane onto which an equivalent stress is finally defined [2–4]. 

If, to implement the CS method, a routine is written by following exactly the algorithm 

as described in several literature articles [2–4], it seems that the outcome is a numerical 

code that is not very efficient and thus slow. This occurs for two main reasons. First, 

searching for the critical plane requires that two or more angles be scanned in the three-

dimensional space. In numerical routines, where angle ranges are digitalized in discrete 

values, this task can be accomplished only through a sequence of nested “for/end” loops, 

which make the total number of iterations to increase considerably. Secondly, at each 

iteration in which a given rotated plane is analyzed, the CS algorithm asks to compute a 

certain number of quantities (e.g. cross spectra and related spectral moments in the rotated 

PSD matrix) that, in fact, are not really necessary to identify the critical plane. 

The computational time may grow from a few minutes up to hours or days (thus far 

beyond any practical limit) when each simulation run needs to be iterated hundreds or 
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thousands of times to analyze the nodal results in a three-dimensional finite element model. 

This is a severe limitation if the method is to be routinely applied in design. 

Having this situation in mind, this works proposes a novel procedure for implementing 

CS criterion, which permits the computation time to be shortened significantly. The 

procedure takes advantage of the exact solution of spectral moments and expected 

maximum peak of normal/shearing stress in any rotated reference frame. This solution is 

the basis of a numerical routine that, being free from any “for/end” loop, is definitively 

much faster than the standard CS algorithm. 

It has to be remarked that the theoretical approach, here devised for the CS criterion, has 

a validity yet more general, being it applicable to any other multiaxial spectral method that 

makes use of angular rotations to identify the critical plane or the equivalent stress. 

2 Frequency-domain description of multiaxial random stress 

A zero-mean stationary Gaussian random process 𝑋(𝑡) is characterized in frequency-

domain by the one-sided Power Spectral Density (PSD) 𝐺𝑥𝑥(𝑓), with spectral moments [5]: 

𝜆m = ∫ 𝑓m𝐺xx(𝑓)
∞

0

d𝑓           𝑚 = 0, 1, 2… (1) 

where 𝜆0 = 𝜎X
2 is the variance, 𝜈0

+ = √𝜆2 𝜆0⁄    the mean upcrossing rate and 𝜈p = √𝜆4 𝜆2⁄     

the rate of peaks [5]. 

A multiaxial stress state is conveniently represented by the random stress vector 

𝛔XYZ(𝑡) = [𝜎x(𝑡), 𝜎y(𝑡), 𝜎z(𝑡), 𝜏yz(𝑡), 𝜏xz(𝑡), 𝜏xy(𝑡)]
T
, where 𝜎 is normal stress and 𝜏 shear 

stress. Vector 𝛔XYZ(𝑡), which refers to the reference frame 𝑃XYZ with origin at P (see Fig. 

1A), can be characterized in the frequency-domain by the 6×6 PSD matrix [6]: 

𝐆XYZ(𝑓) = [

𝐺xx ⋯ 𝐺xx,xy

⋮ ⋱ ⋮
𝐺xx,xy ⋯ 𝐺xy,xy

] = [
𝐺11 ⋯ 𝐺16

⋮ ⋱ ⋮
𝐺61 ⋯ 𝐺66

] 
(2) 

in which the diagonal terms 𝐺ii are auto-PSDs and the off-diagonal terms 𝐺ij (i≠j) are cross-

PSDs. By analogy with Eq. (1), the set of m-th order spectral moments for 𝐆XYZ(𝑓) can be 

collected in the symmetric matrix [6]: 

𝛌m,XYZ = [

𝜆m,11 ⋯ 𝜆m,16

⋮ ⋱ ⋮
𝜆m,61 ⋯ 𝜆m,66

]       , λm,ij = ∫ 𝑓m𝐺ij(𝑓)
∞

0

d𝑓       𝑚 = 0, 1, 2… (3) 

The zero-order moment matrix (m=0) is the covariance matrix 𝛌0,XYZ = 𝐂XYZ of 

𝛔XYZ(𝑡). In what follows, also the second-order moment matrix 𝛌2,XYZ will be used. 

Subscripts specify the reference frame in which the PSD matrix and its spectral moments 

are computed; other reference frames will indeed be introduced in the following sections. 

3 The Carpinteri-Spagnoli spectral method 

The stress vector 𝛔XYZ(𝑡) and its PSD matrix 𝐆XYZ(𝑓) are defined in the fixed reference 

frame 𝑃XYZ with origin in P, see Fig. 1(A). A rotated frame 𝑃X′Y′Z′ with same origin P is 

defined through three Euler angles (𝜙, 𝜃, 𝜓). In the rotated frame, the stress vector 

𝛔X′Y′Z′(𝑡) = [𝜎x′(𝑡), 𝜎y′(𝑡), 𝜎z′(𝑡), 𝜏y′z′(𝑡), 𝜏x′z′(𝑡), 𝜏x′y′(𝑡)]
T
 has PSD matrix [2–4]: 
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𝐆X′Y′Z′(𝑓) = 𝐑(𝜙, 𝜃, 𝜓) 𝐆XYZ(𝑓) 𝐑(𝜙, 𝜃, 𝜓)T (4) 

where 𝐑(𝜙, 𝜃, 𝜓) = 𝐑ψ𝐑θ𝐑ϕ is the product of three rotation matrices [2–4]: 

𝐑(𝜙, 𝜃,𝜓) =

[
 
 
 
 
 
 

𝑐𝜓
2 𝑠𝜓

2 0 0 0 2𝑐𝜓𝑠𝜓

𝑠𝜓
2 𝑐𝜓

2 0 0 0 −2𝑐𝜓𝑠𝜓

0 0 1 0 0 0
0 0 0 𝑐𝜓 𝑠𝜓 0

0 0 0 −𝑠𝜓 𝑐𝜓 0

−𝑐𝜓𝑠𝜓 𝑐𝜓𝑠𝜓 0 0 0 𝑐𝜓
2 − 𝑠𝜓

2
]
 
 
 
 
 
 

[
 
 
 
 
 

𝑐𝜃
2 0 𝑠𝜃

2 0 2𝑐𝜃𝑠𝜃 0
0 1 0 0 0 0
𝑠𝜃

2 0 𝑐𝜃
2 0 −2𝑐𝜃𝑠𝜃 0

0 0 0 𝑐𝜃 0 −𝑠𝜃

−𝑐𝜃𝑠𝜃 0 𝑐𝜃𝑠𝜃 0 𝑐𝜃
2 − 𝑠𝜃

2 0
0 0 0 𝑠𝜃 0 𝑐𝜃 ]

 
 
 
 
 

[
 
 
 
 
 
 

𝑐𝜙
2 𝑠𝜙

2 0 0 0 2𝑐𝜙𝑠𝜙

𝑠𝜙
2 𝑐𝜙

2 0 0 0 −2𝑐𝜙𝑠𝜙

0 0 1 0 0 0
0 0 0 𝑐𝜙 𝑠𝜙 0

0 0 0 −𝑠𝜙 𝑐𝜙 0

−𝑐𝜙𝑠𝜙 𝑐𝜙𝑠𝜙 0 0 0 𝑐𝜙
2 − 𝑠𝜙

2
]
 
 
 
 
 
 

 (5) 

Throughout the text, trigonometric functions are abbreviated 𝑐x = cos 𝑥, 𝑠x = sin 𝑥. 

For 𝐆X′Y′Z′(𝑓), the matrix of m-th order spectral moments 𝛌m,X′Y′Z′ is defined as in Eq. (3). 

 

Fig. 1. (A) Initial rotated frame 𝑃X′Y′Z′; (B) frame  P1̂2̂3̂ of average principal directions; (C) frame 

𝑃uvw  attached to the critical plane (Reprinted from [4], with permission from Elsevier). 

The first step in the CS method is to scan the angles 𝜙 and 𝜃 (in intervals 0 ≤ 𝜙 ≤ 2𝜋 

and 0 ≤ 𝜃 ≤ 𝜋) in order to find that particular direction 𝑍′ (defined by 𝜙∗ and 𝜃∗) which 

maximizes the expected maximum peak of normal stress 𝜎z′(𝑡) in time 𝑇 [2–4]: 

𝐸 [max
0≤t≤T

𝜎z′ (𝑡)] ≅ √𝜆0,3′3′  

(

 √2 ln(𝑁0,3′3′) +
0.5772

√2 ln(𝑁0,3′3′)
)

  (6) 

where 𝜆0,3′3′ is the variance of 𝜎z′(t) and 𝑁0,3′3′ = 𝜈0
+𝑇 = 𝑇√𝜆2,3′3′ 𝜆0,3′3′⁄  is the number 

of mean upcrossings in time length T (note that the actual value of T is irrelevant in 

determining the solution angles). Multiple solutions (𝜙∗, 𝜃∗) may exist due to periodicity of 

trigonometric functions in matrix 𝐑(𝜙, 𝜃, 𝜓). 

Once the 𝑍′-axis has been identified by (𝜙∗, 𝜃∗), see Fig. 1(A),  the next step is to 

scan the angle 𝜓 (0 ≤ 𝜓 ≤ 2π) to find that particular direction 𝑌′ (angle 𝜓∗) which 

maximizes the variance λ0,4′4′ = 𝑉𝑎𝑟[𝜏y′z′(𝑡)] of the shear stress 𝜏y′z′(𝑡) [2–4]: 

max
0≤ψ≤2π

[𝜆0,4′4′] = max
0≤ψ≤2π

∫ 𝐺4′4′(𝑓)
∞

0

d𝑓 (7) 
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After this step, the rotated reference frame 𝑃𝑋′𝑌′𝑍′   is fully identified by the three angles 

(𝜙∗, 𝜃∗, 𝜓∗), positive clockwise. The corresponding rotated PSD matrix follows from Eq. 

(4) as  𝐆X′Y′Z′
∗ (𝑓) = 𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝐆XYZ(𝑓) 𝐑(𝜙∗, 𝜃∗, 𝜓∗)T, where the rotation matrix R is 

now computed at the angles calculated previously (the asterisk identifies a constant value 

and reminds that the spectrum matrix does not depend on Euler angles anymore). Frame 

𝑃X′Y′Z′ identifies the “average principal directions”; from now on, it is renamed as P1̂2̂3̂ , 

see Fig. 1B. 

Starting from 𝑃X′Y′Z′, another frame 𝑃uvw is finally identified through angles 𝛿 and 𝛾, 

see Fig. 1C. Frame 𝑃uvw is attached to the critical plane at point P. The stress vector in 𝑃uvw 

is 𝛔X′′Y′′Z′′(𝑡) = [𝜎x′′(𝑡), 𝜎y′′(𝑡), 𝜎z′′(𝑡), 𝜏y′′z′′(𝑡), 𝜏x′′z′′(𝑡), 𝜏x′′y′′(𝑡)]
T
 and has PSD 

matrix 𝐆uvw(𝑓) = 𝐆X′′Y′′Z′′(𝑓) [2–4]: 

𝐆uvw(𝑓) = 𝐑̃(𝛿, 𝛾) 𝐆X′Y′Z′
∗ (𝑓) 𝐑̃(𝛿, 𝛾)T (8) 

where 𝐆𝑋′𝑌′𝑍′
∗ (𝑓) has been determined at previous steps, whereas the rotation matrix 

𝐑̃(𝛿, 𝛾) = 𝐈6𝐑𝛿𝐑𝛾 represents a sequence of two rotations through matrices 𝐑δ and 𝐑γ, 

which are functions of 𝛿 and 𝛾 (the identity matrix 𝐈6 corresponds to no rotation) [2–4]: 

𝐑̃(𝛿, 𝛾) =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
 

𝑐𝛾
2 𝑠𝛾

2 0 0 0 2𝑐𝛾𝑠𝛾

𝑠𝛾
2 𝑐𝛾

2 0 0 0 −2𝑐𝛾𝑠𝛾

0 0 1 0 0 0
0 0 0 𝑐𝛾 𝑠𝛾 0

0 0 0 −𝑠𝛾 𝑐𝛾 0

−𝑐𝛾𝑠𝛾 𝑐𝛾𝑠𝛾 0 0 0 𝑐𝛾
2 − 𝑠𝛾

2]
 
 
 
 
 
 

[
 
 
 
 
 
 
1 0 0 0 0 0
0 𝑐𝛿

2 𝑠𝛿
2 −2𝑐𝛿𝑠𝛿 0 0

0 𝑠𝛿
2 𝑐𝛿

2 2𝑐𝛿𝑠𝛿 0 0

0 𝑐𝛿𝑠𝛿 −𝑐𝛿𝑠𝛿 𝑐𝛿
2 − 𝑠𝛿

2 0 0
0 0 0 0 𝑐𝛿 𝑠𝛿

0 0 0 0 −𝑠𝛿 𝑐𝛿]
 
 
 
 
 
 

 (9) 

The off-angle δ, which denotes a clockwise rotation about the 2̂-axis (see Fig. 1(C)), 

takes the value δ∗ = (3π 8)⁄ [1 − (𝜏af−1 𝜎af−1⁄ )2 ] that only depends on normal and shear 

stress fatigue limits,  𝜎af−1 and 𝜏af−1 under fully-reversed loading [2–4]. 

The last angle to be identified is 𝛾, which represents a counterclockwise rotation about 

the w-axis, Fig. 1(C). Scanning the interval 0 ≤ 𝛾 ≤ 2𝜋 yields the value 𝛾∗ that maximizes 

the variance 𝜆0,4′′4′′ = 𝑉𝑎𝑟[𝜏y′′z′′(𝑡)] of the shear stress 𝜏y′′z′′(𝑡) [2–4]: 

max
0≤γ≤2π

[𝜆0,4′′4′′] = max
0≤γ≤2π

∫ 𝐺4′′4′′(𝑓)
∞

0

d𝑓 (10) 

After this last step, the critical plane is fully localized by the angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗). 

The PSD matrix of 𝛔X′′Y′′Z′′(𝑡)  follows directly from the PSD matrix in the initial 

reference frame 𝐆X′′Y′′Z′′
∗ (𝑓) = 𝐑̃(𝛿∗, 𝛾∗) 𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝐆XYZ

∗ (𝑓) 𝐑(𝜙∗, 𝜃∗, 𝜓∗)T 𝐑̃(𝛿∗, 𝛾∗)T 

(the asterisk reminds that the PSD matrix no longer depends on rotation angles). 

Two terms of matrix 𝐆X′′Y′′Z′′
∗ (𝑓) are linearly combined to define the power spectrum 

𝐺eq(𝑓) = 𝐺3′′3′′ + (𝜎af−1 𝜏af−1⁄ )𝐺4′′4′′ of an equivalent stress linked to the critical plane 

(note that different definitions exist [2–4]). The damage of the equivalent stress can be 

estimated from 𝐺eq(𝑓) by uniaxial spectral methods (e.g. TB method, Dirlik) [6,7]. 

The available references [2–4] do not report any guideline on how to translate the CS 

method into a numerical algorithm. If one follows exactly the procedure as detailed above, 

it seems that – for any set of angles to be scanned – it is required to compute the rotated 

PSD matrix and its corresponding spectral moments, from which to extract only those 

moments (𝜆0,3′3′, 𝜆2,3′3′, 𝜆0,4′4′) that are necessary to determine the maximum variance or 

peak characterizing that particular set of angles selected previously.  

In numerical algorithms, in which angle intervals are discretized, this procedure must be 

iterated over all the discrete values at which every angle interval is subdivided. This task is 

accomplished through “for/end” loops in which, at each iteration, an angle value is assigned 

and the resulting maximum computed. Once all digitalized angles have been scanned and 
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the corresponding maximum stored, the overall largest maximum variance or peak can be 

identified, along with its corresponding angle.  

 

Fig. 2. Numerical code of CS method: comparison between standard and new algorithm 

The numerical algorithm is sketched in Fig. 2(left). The number of iterations (i.e. 

number of planes to be analyzed) is 𝑛tot = 𝑛ϕ ∙ 𝑛θ + 𝑛ψ + 𝑛𝛾, where 𝑛𝑥 is the number of 

points for each digitalized angle interval, which is inversely proportional to the 

discretization step. A narrow step improves the resolution in locating the critical plane, but 

also increases the number of iterations, making the algorithm computationally expensive. 

4 Proposed algorithm 

The computational efficiency of the previous algorithm can be made much faster if 

“for/end” loops are replaced by the analytical expressions of those spectral moments really 

involved in critical plane search. By applying Eq. (3) to the rotated PSD matrix in Eq. (4) 

yields the m-th order spectral moment matrix in the rotated frame 𝑃X′Y′Z′: 

𝛌m,X′Y′Z′ = 𝐑(𝜙, 𝜃, 𝜓) 𝛌m,XYZ 𝐑(𝜙, 𝜃, 𝜓)T (11) 

Equation (6) only requires the spectral moment in position 33, which can be extracted 

from 𝛌m,X′Y′Z′  through an auxiliary vector 𝒂𝟑 = [0 0 1 0 0 0]T as:  

λm,3′3′ = 𝒂𝟑 𝐑(𝜙, 𝜃, 𝜓) 𝛌m,XYZ 𝐑(𝜙, 𝜃, 𝜓)T 𝒂𝟑
T (12) 

The subscript specifies that 𝒂𝟑 has a unit value in position 3 and zeros elsewhere. 

Equation (12) must be solved twice to determine λ0,3′3′ and λ2,3′3′, which are both required 

in Eq. (6). This task would be rather tedious if carried out by hand calculations, but it 

becomes much simple with the help of a numerical computation tool (as Matlab Symbolic). 

A short portion of λ0,3′3′ is (the complete expression is too long to be reported here): 

λ0,3′3′ = 𝑐ϕ
4𝑠θ

4λ0,11 + 𝑠ϕ
4𝑠θ

4λ0,22 + 𝑐θ
4λ0,33 + 4𝑐θ

2𝑠ϕ
2𝑠θ

2λ0,44 + 4𝑐ϕ
2𝑐θ

2𝑠θ
2λ0,55

+ 4𝑐ϕ
2𝑠ϕ

2𝑠θ
4λ0,66 + 2𝑐ϕ

2𝑠ϕ
2𝑠θ

4λ0,12 + 2𝑐ϕ
2𝑠ϕ

2𝑠θ
2λ0,23 + ⋯ 

(13) 

% original CS algorithm
...% read input PSD
...

% define vectors of angles
phi=linspace(0,2*pi,nphi)
...

% Step 1: find theta* and phi*
for i=1:ntheta
for j=1:nphi
...
...

end
end

% Step 2: find phi*
for i=1:npsi

...
end

% Step3: find delta*
delta=3*pi/8*(1-(tau_af/sigma_af)^2);

% Step 4: find gamma*
for i=1:ngamma

...
end

Geq=... % compute equiv.PSD

% new CS algorithm
...% read input PSD
...

% define vectors of angles
phi=linspace(0,2*pi,nphi)
...

% Step 1: find theta* and phi*
[PHIm,THETAm] = meshgrid(PHI,THETA);
m0zzRot=C_THETA.^4.*Vzz+C_PHI.^4.*S_THETA.^4.*Vxx+...
m2zzRot=C_THETA.^4.*m2zz+C_PHI.^4.*S_THETA.^4.*m2xx+...
N1=(sqrt(m2zzRot./mzzRot).*T)./(2.*pi);
ESzz= 
sqrt(mzzRot).*(sqrt(2.*log(N1))+0.5772./sqrt(2.*log(N1)));  
[maxESzz,imaxZZ]=max(ESzz(:));% find maximum
...
...

% Step 2: find phi*
myzRot=C_PSI.^2.*C_phi.^2.*C_theta.^2.*Vyz+...
[maxVarYZ,imax3] = max(myzRot(:)); 

% Step3: find delta*
delta=3*pi/8*(1-(tau_af/sigma_af)^2);

% Step 4: find gamma*
MVW_Rot=C_GAMA.^2.*C_delta.^2.*C_theta.^4.*S_delta.^2.*Vzz
+ 
C_GAMA.^2.*C_delta.^2.*C_psi.^4.*S_delta.^2.*S_phi.^4.*Vxx
+...
gama_maxVarVW = GAMA(imaxVW);

Geq=... % compute equiv.PSD
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where λ0,ij are the spectral moments of 𝐆XYZ(𝑓) and 𝑐x, 𝑠x stand for sine and cosine. 

Although apparently complicated, the complete expression is simply a summation over the 

whole set of moments λm,ij of vector 𝛔XYZ(𝑡): 

λm,3′3′ = ∑(𝑞ii(𝜙, 𝜃, 𝜓) λm,ij)

6

i=1

+ 2∑ ∑(𝑞ij(𝜙, 𝜃, 𝜓) λm,ij)

j<i

6

i=2

 (14) 

where 𝑞ii, 𝑞ij are trigonometric coefficients that only depend on angles (𝜙, 𝜃, 𝜓). Also 

the analytical expression of 𝑁0,3′3′ = 𝑇√𝜆2,3′3′ 𝜆0,3′3′⁄  can easily be computed from those 

of λ0,3′3′ and λ2,3′3′. This computational artifice permits the analytical expression of 

𝐸[max 𝜎𝑧′ (𝑡)] = 𝐹1(𝜙, 𝜃, 𝜓) in Eq. (6) to be obtained as a function of the angles (𝜙, 𝜃, 𝜓) 

(note that the algorithm in Fig. 2(right) adopts a different strategy based on the element-by-

element multiplication operator .* in Matlab).  

When Eq. (6) is being solved to locate 𝑍′, only two values 𝜙∗, 𝜃∗ need to be found (𝜓 is 

taken zero being it irrelevant). In Matlab, this task can be achieved quite easily. First define 

the vectors that discretize the angular intervals 0 ≤ 𝜙 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜋  and use them to 

create a two-dimensional array (command meshgrid). Then, compute 𝐹1(𝜙, 𝜃, 𝜓) at any 

element in the array. Finally, look for the largest maximum in the array (or periodic 

maxima) by issuing the command find. This will return the solutions 𝜙∗, 𝜃∗. 

Once the first two angles are found, the next step is to apply Eq. (12) with a different 

auxiliary vector 𝒂𝟒 (unit value in position 4) to determine the spectral moment in Eq. (7) 

directly as 𝜆0,4′4′ = 𝒂𝟒 𝐑(𝜙∗, 𝜃∗, 𝜓) 𝛌m,XYZ 𝐑(𝜙∗, 𝜃∗, 𝜓)T 𝒂𝟒
T. A quite long analytical 

expression is again obtained, which is very much like Eq. (13). This expression for 

𝜆0,4′4′ = 𝐹2(𝜓) is only a function of 𝜓. It is then no effort to find the value 𝜓∗ (with proper 

periodicity) at which 𝜆0,4′4′ reaches its maximum. 

At this step, the procedure returns the angle values (𝜙∗, 𝜃∗, 𝜓∗) that locate the rotated 

frame 𝑃X′Y′Z′, in which the stress vector 𝛔X′Y′Z′(𝑡) has the PSD matrix 𝐆X′Y′Z′
∗ (𝑓) 

computed by Eq. (4) by taking 𝐑(𝜙∗, 𝜃∗, 𝜓∗), see the expression introduced after Eq. (7). 

The previous line of reasoning is pursued to find 𝛿∗, 𝛾∗ defining 𝑃uvw. Equation (3), 

applied to the PSD matrix in Eq. (8), gives the matrix m-th spectral moments of 𝐆uvw(𝑓): 

𝛌m,uvz = 𝐑̃(δ∗, 𝛾) 𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝛌m,XYZ 𝐑(𝜙∗, 𝜃∗, 𝜓∗)T 𝐑̃(𝛿∗, 𝛾)T (15) 

In this expression, matrix 𝛌m,X′Y′Z′ is written explicitly in terms of 𝛌m,XYZ through Eq. 

(11), in which the angles (𝜙∗, 𝜃∗, 𝜓∗) calculated in previous steps are introduced. Also the 

off-angle 𝛿∗ is inserted in Eq. (15), as it follows from material properties. The auxiliary 

vector 𝒂𝟒 permits the spectral moment in position 44 to be extracted from  𝛌m,uvz as 

𝜆0,4′′4′′ = 𝒂𝟒 𝐑̃(𝛾) 𝐑 𝛌m,𝑋𝑌𝑍𝐑
𝑇 𝐑̃(𝛾)T 𝒂𝟒

𝐓 (to avoid clutter, only the dependence on 𝛾 has 

been written). A numerical symbolic tool would yield the (quite long) analytical expression 

of 𝜆0,4′′4′′ = 𝐹3(𝛾) with no particular effort. Being only a function of one variable 𝛾, it is 

almost trivial to find the last angle 𝛾∗ corresponding to max [𝐹3(𝛾)]. At this stage the 

algorithm ends by providing the solution angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗). 

Note that the algorithm, sketched in Fig. 2(right), is free from “for/ends” loops. 

5 Numerical case studies 

A first numerical example deals with uncorrelated random bending/torsion with narrow-

band power spectrum centered at 30 Hz. The covariance matrix C has non-zero elements 
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𝜆0,11 = 20, 𝜆0,22 = 40, 𝜆0,33 = 60, 𝜆0,44 = 200  (MPa2 units) and zeroes elsewhere. 

Material has 𝜏af−1 = 𝜎af−1 √3⁄ . 

Five angular steps (∆=1°, 5°, 10°, 20°, 30°) have been scrutinized with the purpose of 

comparing the computation time needed by both algorithms and to investigate how much 

sensitive is the equivalent spectrum 𝐺eq(𝑓) to the resolution Δ used to locate the critical 

plane. The larger resolutions (∆=10°, 20°, 30°) were included only to make the analysis the 

most complete, although they are actually too coarse for engineering applications. 

For every Δ, either methods (standard CS and improved) have been applied to the input 

PSD matrix 𝐆𝑋𝑌𝑍(𝑓) in order to determine the rotations angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗) of the 

critical plane and the corresponding spectrum 𝐺𝑒𝑞(𝑓). 

Each simulation clocked the computation time (elapsed time) needed by each algorithm 

to complete the critical plane search. This time is plotted in Fig. 3(A) versus the number of 

planes 𝑛tot scanned by the standard CS method (𝑛tot is roughly proportional to 1 ∆2⁄ ). In 

graphs, the lines connecting adjacent markers are only used to best emphasize the trend and 

do not represent actual values from simulations. 

 

Fig. 3. Trend of (A) computation time and (B) normalized variance 𝑉𝑒𝑞/𝑉𝑒𝑞,𝑚𝑎𝑥 as a function of the 

number of scanned planes (log scale) and angular resolution ∆ 

As already observed, trigonometric functions in matrices 𝐑(𝜙, 𝜃, 𝜓) and 𝐑̃(𝛿, 𝛾) lead to 

multiple (periodic) solution angles at which the same maximum is attained. This occurs, for 

instance, for 𝐸[max 𝜎z′ (𝑡)] and max[𝜆0,4′′4′′], whereas max[𝜆0,4′4′] is constant, so the 

solution 𝜓∗ remains indeterminate. In simulations, only one solution has been stored 

regardless of periodicity or indeterminacy. 

For the standard CS algorithm, the computation time spans from a few seconds to about 

300 seconds. For angular steps from ∆=30° down to 5°, the time only increases of about 

two or three times. Instead, it sharply lengthens of about an order of magnitude (from 13 up 

to 300 seconds) for a change from 5° down to 1° (this decrease of one fifth makes the 

number of planes to grow up of 23 times – from 2847 to 66063). 

For the new CS algorithm, instead, the computation time remains always very small (at 

most, few tenths of a second) and it is also much less sensitive to the change in angular step 

(the green dashed line in Fig. 3(A) is indeed not really horizontal). What is quite apparent is 

that the new algorithm is definitively much faster than the standard one, with a maximum 

time saving of about 1400 times for ∆=1°. 

On the other hand, it seems not necessary to attain such a small angular resolution. At 

least for these numerical examples, the variance of the equivalent stress seems indeed not 

so much sensitive to the values of ∆. Fig. 3(B) displays the trend of 𝑉eq = 𝑉𝑎𝑟[𝐺eq(𝑓)] 

versus ∆ (the values are normalized to the largest maximum 𝑉eq,max reached for 1°). Other 

types of trend (not monotonic) may also be observed when processing for input PSDs. The 
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variance is monitored as it determines the expected fatigue damage. In Fig. 3(B), only a 

small difference (below 10%) is observed over the angular gaps examined. The change in 

variance versus ∆ is caused by the deviation of the critical plane orientation with respect to 

the (presumably correct) position attained at very small Δ. 

To further emphasize the advantage of the new procedure over the standard one, a finite 

element (FE) analysis of an L-shaped structure is considered. This example is of particular 

interest for engineering applications, being it representative of a typical design case study in 

which the CS algorithm needs to be iterated over hundreds or thousands FE nodes. 

The FE model here analyzed consists of “shell” elements arranged in a free mesh (Fig. 

4(A)), with an average element size 6.5 mm that gives a total of 394 elements and 469 

nodes. The structure is subjected to band-limited accelerations applied at the two ends. The 

calculated stress PSDs at each node are discretized into 1247 frequency points in the range 

0≤f≤200 Hz. For other details see [8]. 

 

Fig. 4. (A) Contour plot of the variance 𝑉eq (log scale); (B) elapsed time for multiple runs 

Fig. 4(A) depicts the color map (log scale) of the variance 𝑉eq obtained with Δ=1°. Fig. 

4(B) compares the computation time for various Δ values and different numbers of 

iterations 𝑛RUNS. Results on the center-left side (𝑛RUNS=1, 10, 100) were performed in 

Matlab by iterating the algorithm of Fig. 2 (this approach aims to mimic a FE model with 

very few nodes); results on the right side (𝑛RUNS=469) come from processing the nodal 

stress PSDs from FE analysis (in both cases, the same frequency discretization is used). 

A linear trend in log-log scale is obtained. For the standard CS algorithm, the elapsed 

time can be approximated as 𝑇CS ≅ (𝐴 𝑛f 𝑛RUNS) Δ2⁄  (for Δ<5°), where 𝑛f is the number of 

frequency points (𝑛f=1200 in this example). Constant 𝐴 = 1.445  is calibrated on the PC 

under use (𝐴 differs for the new algorithm). The previous formula, suitably calibrated for 

two small values of 𝑛RUNS, would allow a quick estimate of the computation time needed 

for FE models with a much larger number of nodes.  

The decisive advantage of the new CS algorithm is obvious from Fig. 4(B). While the 

new algorithm only requires 2.2 seconds for Δ=5°, the standard one demands 3790 seconds 

(10 hours) – that is, 1700 times more – which is a surprisingly huge time for such a small 

FE model. If this time were extrapolated to the number of nodes in medium-to-large-size 

FE model, it would go beyond any limit acceptable in practical applications. 

7 Conclusions 

Based on our understanding of the articles accessible in the literature, the critical plane 

CS spectral method has initially been turned into a numerical code. Following exactly the 
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procedure as it is explained in those articles (no specific guidelines on the numerical aspect 

are available), the numerical code resulted to be not very efficient and rather time-

consuming. It indeed seems unavoidable for the code to use several “for/end” loop to scan, 

in the three-dimensional space, all the planes before the critical plane is correctly located 

through five rotation angles. The number of planes increases by far if the step of discretized 

angular values is made smaller. This numerical inefficiency could be a severe limitation if 

the CS criterion needs to be applied to the stress PSD in each node of a 3D FE model. 

This situation motivated the attempt to develop a new CS algorithm able to make the 

computation time much shorter. This goal is achieved by considering in the algorithm only 

those spectral moments and parameters that are really processed by the CS method in the 

critical plane search, and by deriving their analytical expressions in closed-form as a 

function of rotation angles and of spectral moments in the initial (fixed) frame. This 

strategy then avoids that unnecessary data be calculated (e.g. PSD matrix and its moments 

in any rotated plane to be scanned) and permits “for/end” loops to be eliminated from the 

numerical code. 

Several numerical examples confirmed that the new algorithm can shorten the 

computation time as much as 1400 times for an angular step 1°. This figure of merit gives a 

decisive advantage of the new algorithm if the CS method is applied to the output of three-

dimensional FE models, in which the algorithm need to be iterated to process the stress 

PSDs of hundreds or thousands of nodes. 

Last, but not least, it is worth noting that the procedure described in this paper has a far 

more general validity, its theoretical framework being applicable to any other multiaxial 

spectral method that needs angular rotations to identify the critical plane. 
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