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1. Introduction  

In the last decades, finite element (FE) method has proven to be an efficient tool for the 
numerical analysis of two- or three-dimensional structures of whatever complexity, in 
mechanical, thermal or other physical problems. It is widely recognised that computational 
cost (as time and computer capability) increases greatly with structure complexity, being 
larger with three-dimensional analyses than with two-dimensional ones. 
It is therefore desirable to devise simplified approaches that may provide a reduction in 
overall computational effort. An example of considerable importance is the study of bodies 
of revolution (axisymmetric structures) under axisymmetric loading, where a three-
dimensional problem is solved by a two-dimensional analysis. Examples are vessels under 
internal pressure, rotating disks, foundation piles (Zienkiewicz & Taylor, 2000).  
Apart from axisymmetric problems solved by a plane model, a full three-dimensional 
analysis is needed, in principle, whenever the structure is axisymmetric but the load is not. 
In such situations, often encountered in many engineering applications, it is desirable to 
search for simplified approaches, which may still replace (and thus avoid the computation 
effort needed by) the use of full three-dimensional simulations.  
A particular sub-class of problems is encountered when the load applied to axisymmetric 
structures is exactly antisymmetric; an example is a shaft under a torsion load, which, as it 
will be shown, can be solved by a plane FE approach, which greatly simplifies the analysis.  
Another example is represented by semi-analytical methods, which have been developed 
more than fifty years ago for FE analysis of axisymmetric structures loaded non-
axisymmetrically (Wilson, 1965). Such methods use a Fourier series expansion to reduce a 
three-dimensional problem to a two-dimensional harmonic model and to compute the 
solution as superposition of results of every harmonic component analysis. At present, this 
approach is still not well established and it is rarely used in mechanical design. Even 
commercial FE codes including harmonic elements have found limited application, due to 
practical difficulties related to Fourier series conversion of external loads. Only few 
applications of semi-analytical methods to engineering practical cases have been reported in 
literature, see (Genta & Tonoli, 1996; Lai & Booker, 1991; Kim et al., 1994; Pedersen & 
Laursen, 1982; Taiebait & Carter, 2001; Thomas et al., 1983; Zienkiewicz & Taylor, 2000). 
The goal of this work is twofold. First, it aims to provide a theoretical background on the use 
of semi-analytical FE approach in numerical analysis of axisymmetric structures loaded non-
axialsymmetrically. In particular, two original results are developed: a plane "axi-
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antisymmetric" FE model for solving axisymmetric components loaded in torsion, a semi-
analytical approach for the analysis of plane axisymmetric bodies under non-axisymmetric 
thermal loadings. The second intent of the work is to clarify some practical aspects in the 
application of semi-analytical method to engineering problems. Two illustrative examples 
are then discussed: an axisymmetric component with shoulder fillet under axial, bending 
and torsion mechanical loading, followed by the more general case of a shaft; a simplified 
numerical approach for estimating the transient temperature field in a rotating cylinder 
under thermal loadings. The presented examples confirm how the proposed approach gives 
a high accuracy in results, with also a significant reduction in computational time, compared 
to classical FE analyses.  

2. Theoretical background 

A three-dimensional structure or solid is defined as "axisymmetric" if its geometry, material 
properties and boundary conditions are independent of an azimuth coordinate θ of a 
cylindrical reference frame (r,θ,z), where z is the component axis of symmetry and r is the 
radial distance from z-axis, see Fig. 1. 
 

 

Fig. 1. An axisymmetric solid: cylindrical reference system and displacement components 

Depending on the configuration of external loads, different types of analysis can be 
identified. For example, if also external loads are themselves axisymmetric with respect to 
same z-axis, the analysis is axisymmetric and mathematically two-dimensional, that is 
results are independent of θ and they are only function of r, z coordinates (Bathe, 1996; Cook 
et al., 1989; Zienkiewicz & Taylor, 2000). Examples are disks rotating at uniform speed 
under centrifugal forces or cylindrical vessels under internal pressure. 
Another situation occurs for an axisymmetric structure under an "axi-antisymmetric" 
loading (this term will be clarified later on), i.e. a loading which is axial anti-symmetric with 
respect to z-axis and also independent of θ angle. An example is a cylindrical body under a 
torsion loading. As it will be shown, the analysis becomes really one-dimensional and 
results are only function of r and z. 
A third situation, of great practical interest, occurs when a structure is axisymmetric but the 
loading is not, so that the analysis becomes really three-dimensional. A great simplification 
can be achieved by using a so-called semi-analytical approach, which adopts a harmonic 
model based on Fourier series method. 
The next sections will address the main aspects of FE theory for the case of two- and three-

dimensional axisymmetric structures under different types of both mechanical and thermal 
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loadings. For a mechanical analysis, the theory for axisymmetric, axi-antisymmetric and 

non-axisymmetric mechanical loads will be developed. For a thermal analysis, a one-

dimensional finite element for dealing with axisymmetric plane body under non-

axisymmetric thermal loadings will be next developed; the steady-state and transient case 

will be considered. 

3. Mechanical analysis 

This section is concerned with FE theory for mechanical analysis of axisymmetric structures 

under, respectively, axisymmetric, axi-antisymmetric and non-axisymmetric loads.  

3.1 Plane axisymmetric finite element 
Although the theory of axisymmetric mechanical analysis is well known (Cook et al., 
1989; Wilson, 1965; Zienkiewicz & Taylor, 2000), it will be shortly reviewed to introduce 
several equations that will be used in the following sections. In the case of axisymmetric 
structures loaded by axially symmetric loads, by symmetry, the two displacement 
components u and w in any plane section of the body along its axis of symmetry 
completely define the state of strain and, accordingly, the state of stress (Zienkiewicz & 
Taylor, 2000). Thus, the circumferential (hoop) displacement v, the tangential stress 
components Ǖrθ and Ǖθz and their corresponding shear strains Ǆrθ and Ǆθz must be zero, see 
Fig. 2. The analysis then reduces to a plane FE model, characterized by only radial u(r,z) 
and axial w(r,z) displacements, where r and z denote the radial and axial coordinates of a 
point within the structure. For a M-nodes finite element, the vector of displacement field 
in the cylindrical reference system (r,θ,z) is: 
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where ui, wi are the nodal displacements and Ni(r,z) is the shape function for node i.  
As already mentioned, four non-zero strain components have to be considered in an 

axisymmetric deformation, see Fig. 2; the strain vector in polar coordinates thus is: 
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where submatrix [Bi,pl_st] corresponds to that of plane case and its dimension is 3x2. For 

example, as it is well known for 3-nodes triangular element it is: 

www.intechopen.com



 
Numerical Analysis – Theory and Application 

 

74

  
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 (3) 

where A=(r1z3+r2z1+r3z2–r1z2–r2z3–r3z1)/2 is the element area. As matrix [B] depends on r and 
z coordinates, the strains are no longer constant within an element, as in plane stress or 
plane strain (the strain variation is due to the εθ term). 
 

 

Fig. 2. Strains and stresses involved in an axisymmetric analysis 

The element stiffness matrix is calculated as an integral over the element volume Vel, which 

for axial symmetry coincides with the whole ring of material: 
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where Ael is the cross-sectional area of the element on a plane section. The elasticity or 

Hookean matrix [D] in Eq. (4), which links the vectors of strains and stresses, in the 

hypothesis of isotropic material has the following form: 
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 (5) 

where E is the modulus of elasticity (Young's modulus) and ν is the Poisson's ratio. 

3.2 Plane axi-antisymmetric finite element 
An interesting application is represented by the study of axisymmetric structures subjected 

to axi-antisymmetric loadings (this term refers to the well known cases of symmetry and 

anti-symmetry). An example is a shaft of variable diameter under a torsion load applied at 

the ends (Timoshenko & Goodier, 1951). In this configuration, load is antisymmetric with 

respect to each plane passing across structure z-axis (this plane then behaves as a plane of 

axis-antisymmetry) and it is also independent of θ angle.  
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In literature, to solve the problem of an axisymmetric body under torsion by using a plane 

FE approach it is suggested using a variational approach, in which the solution is a stress 

function φ which minimises the functional (Zienkiewicz & Cheung, 1965, 1967): 
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 (6) 

Instead, this work will show that it is possible to develop a simple FE theory applicable to 

an axisymmetric structure under torsion, by analogy with the theory of axisymmetric 

loading previously reviewed. In fact, in this configuration each element node has only one 

degree of freedom (the hoop displacement v), while radial and axial displacements u and w 

(warping), as well as normal stresses ǔr, ǔθ, ǔz, shear stress Ǖrz and their related strain 

components vanish. By symmetry, the hoop displacement does not depend on angle θ and 

only two non-null strains Ǆrθ and Ǆθz are present. By analogy with Eq. (1), the displacement 

of a point within a M-nodes element is: 
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where vi is the nodal displacement and Ni(r,z) is the shape function of node i. The related 

strain vector is: 
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where [B] is the strain-displacement matrix, with dimension 1xM. As an example, for a 3-
nodes triangular finite element, matrix [B] has the following expression: 
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The expression of the element stiffness matrix and of equivalent nodal loads can thus be 

easily evaluated using Eq. (4), with the following elasticity matrix: 

    
1 0

0 12 1

E
D


 

    
 (10) 

 

It is worth mentioning that this approach seems not to be implemented in commercial FE 

codes. Nevertheless, it can be implemented as a particular case of a harmonic finite element, 

discussed in next section. 
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3.3 Harmonic finite element 
A third type of problem, of more practical interest, is when the structure is axially 

symmetric but the loading is not, so that the analysis is really three-dimensional. A great 

simplification can be obtained by using a semi-analytical approach, based on a harmonic FE 

model and Fourier series expansion of loads. As it will be shown, it can be demonstrated 

that, in linear analysis, a harmonic load produces a harmonic response in term of stress and 

displacements. The solution is then obtained by superimposing results of each harmonic, 

which are totally uncoupled (Cook et al., 1989; Zienkiewicz & Taylor, 2000).  

To start with, the nodal loads applied to the structure can be expanded in Fourier series 
as:  
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 (11) 

 

where symbols R, T and Z indicate respectively the radial, hoop and axial load components. 

A similar series expansion holds also for body forces, boundary conditions, initial strains, 

etc. In Eq. (11), all barred quantities are amplitudes, which are functions of r, z but not of θ. 
Single-barred amplitudes represent symmetric load components (loads which have θ=0 as a 

plane of symmetry), while double-barred amplitudes represent antisymmetric load terms. 

The sine expansion in T load is necessary to assure symmetry, as the direction of T has to 

change for θ>. The constant terms R0 and Z0 permit axisymmetric load condition to be 

described, while the term T0 refers to the axi-antisymmetric load. These three terms are 

grouped into a single vector representing the constant term of the Fourier series.  

It is possible to demonstrate (Cook et al., 1989) that in a linear analysis, when loads are 

expanded as in Eq. (11), displacement components are described by Fourier series as well: 
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 (12) 

 

All three displacements are needed because the physical problem is three-dimensional. The 

motivation of the arbitrarily chosen negative sign in the v series is that it greatly simplifies 

the computation of the element stiffness matrix, as it will be explained later on. As for the 

loads, the single- and double-barred terms refer to symmetric and antisymmetric 

components. 
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A Fourier series expansion similar to Eq. (12) can be equally used also for the nodal 

displacements of a finite element. Within a finite element, one can thus interpolate the 

amplitudes nu , nu , nv , nv , etc. of the displacement components in Eq. (12) from the 

corresponding nodal amplitudes ( inu , inu , inv , inv , inw , inw ), where subscript in specifies 

that amplitude refers to node i and harmonic n. Therefore, the vector of displacement field 

within the element can be described in the following form: 
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where nN    and nN 
   are 1xM arrays of 3x3 submatrices (M is the number of element 

nodes); note that such matrices both depend on n because of the (cosnθ) and (sinnθ) terms. 
The strain vector in cylindrical coordinate is given by (Cook et al., 1989): 
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where [∂] is a differential operator matrix, with dimension 6x3. Therefore, also strains are 

expanded in Fourier series and the contribution of n-th harmonic thus is 

     n nn n n
B u B u        . Equation (14) defines, for harmonic n, the strain-

displacement matrices 1n 2n Mn
n

B B B B        and 1n 2n Mn
n

B B B B       , 

which are 1xM arrays of the 6x3 submatrices  in inB N         and   in inB N        . For the 

i-th node, one submatrix is: 
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while for inB 
   one finds that (sinnθ) and (cosnθ) are interchanged and, in addition, there is 

an algebraic sign change in the third and fourth row, that is to say that inB 
   can be 

obtained from that of inB 
   by simply substituting (–sinnθ) with (cosnθ) and (cosnθ)  with 

(sinnθ). 
Shape functions Ni depend on r and z. Therefore, as shown in Eq. (15) inB   , as well as 

inB 
  , are functions of r, z, θ and obviously of n. A unique strain-displacement matrix can 

be defined by assembling matrices inB    and inB 
   as n 0 n 1B B B        , 

0 1n nB B B 
       . If only H harmonics are retained in the Fourier series, matrices B    

and B 
   become 1xH arrays of the 6x3M submatrices inB    and inB 

  , respectively. 

Two stiffness matrices nk    and nk 
  

 have to be defined according to Eq. (4) for both 

single- and double-barred terms in Fourier series expansion: 

  
el

n nn dT

A
k B D B dA








 
              

        
el

n n n dT

A
k B D B dA








                 
   (16) 

The integrand matrix [B]T[D][B] is a full matrix of size (3MH)x(3MH); it is composed of an 

HxH array of 3Mx3M submatrices [kn]. The off-diagonal submatrices contain in every term 

the products (sinmθ)(sinnθ) or (cosmθ)(cosnθ) with m≠n, which give zero when integrated 

from – to +, due to the so-called orthogonality property of trigonometric functions. The 

remaining H on-diagonal submatrices, with dimension 3Mx3M, contain (sin2nθ) and (cos2nθ) 
in every term, which integrated from – to + give a common factor  (or 2 for n=0). 

Integration on r and z variables in Eq. (16) is done, as if the problem were axially symmetric. 
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It should also be mentioned that, due to choice of negative sign in the second expression in 

Eq. (12), the stiffness matrix for double-barred terms is identical to that of single-barred 

terms, that is n nk k        
 (Cook et al., 1989). Stiffness matrices for single- and double-barred 

terms can be arranged in a single diagonal block matrix, as: 
 

    0 1 0 1H Hk diag k k k k k k                           
   (17) 

 

where each matrix nk    and nk 
  

 is of size 3Mx3M and subscript 0,1, …,H specifies the 

number of the Fourier harmonic. Matrix [k0] has similar dimension; it contains both 

symmetric and antisymmetric terms, but obviously no coupling terms are present. The 

above theory then shows that in linearity, due to the topology of stiffness matrix, the 

problem is uncoupled and H separate problems are solved (Bressan et al., 2009). For 

example, if the simple case of a cylinder is considered, in a three-dimensional analysis it 

would be necessary to solve about (3p3/2)/(a1/2) equations (parameter a is the cylinder aspect 

ratio, defined as the ratio between the length and the radius, parameter p is the plane model 

node number), whereas in the plane case (2H+1) systems constituted by 3p equations should 

be solved. As H<<p, computational time would be strongly reduced. 

4. Thermal analysis with a harmonic FE approach 

An interesting issue here investigated is the use of a one-dimensional harmonic FE model 

for steady-state and transient thermal analysis of two-dimensional axisymmetric structures 

under non-axisymmetric thermal loadings. An example could be a rotating cylinder under 

imposed temperature and fluxes, which has been used as a simplified model for estimating 

the non-uniform transient temperature in a work roll of a hot rolling mill (Benasciutti, 

2010a). Numerical FE modelling may be still very complex, even using a simplified two-

dimensional modelling with a commercial FE code, as transient analysis needs large 

computational times and computer resources. Instead, a semi-analytical approach based on 

harmonic model would greatly reduce the computational burden. On the other hand, in 

commercial FE codes a one-dimensional harmonic thermal finite element is usually not 

implemented. Hence, this work will close the gap by developing the theory of a one-

dimensional harmonic finite element for steady-state and transient thermal analysis of two-

dimensional axisymmetric problems under non-axisymmetric thermal loadings. Other 

examples on thermal problems solved by a numerical approach can be found in 

(Awrejcewicz et al., 2007, 2009). 

4.1 Steady-state thermal analysis 
As discussed above, a harmonic model based on Fourier series expansion allows a three-

dimensional physical problem to be reduced to a two-dimensional one. Similarly, a two-

dimensional problem can be solved by a one-dimensional analysis. A significant 

reduction in total simulation time and also a saving of computational resources is thus 

achieved. 
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The study of two-dimensional problems by harmonic model needs a one-dimensional mesh 

along the radial direction. In a thermal analysis, the elements used are of "truss type" (one-

dimensional) and the degree of freedom in each node is temperature. The theory of different 

types of harmonic finite element for thermal analysis have been formulated for a plane 

thermal analysis: two-node elements (with one or two Gauss points) having linear shape 

functions, three-node elements (with two or four Gauss points) having quadratic shape 

functions (Benasciutti et al., 2010b, 2011). 

An example is shown in Fig. 3(a); two reference systems are used: r is the abscissa in global 

reference system (r=0 is the centre of the axisymmetric geometry), x is the coordinate within 

the element. The mesh is one-dimensional and consists of adjacent elements located along 

the radius of solid, see Fig. 3(b). 

 

             

Fig. 3. (a) Two-node element with one Gauss point (r is global coordinate, x is element 
coordinate); (b) mesh (example of notation: 12 and 22 are nodes of element 2) 

As previously discussed with reference to mechanical analysis, due to orthogonality 

property of trigonometric terms of Fourier series expansion the element stiffness matrix is a 

block diagonal matrix, see Eq. (17), where [kn] is the elementary stiffness matrix for n-th term 

of Fourier series and H is the number of harmonics.  

Explicit expressions for shape functions and stiffness matrix have been derived for each 

element type mentioned above (Benasciutti et al., 2011). As an example, the stiffness matrix 

of the two-node element with two Gauss points is here calculated. Similarly to Eq. (12), the 

temperature is first expanded in Fourier series as:  
 

  
0 1

n n, ( )cos ( )sin
n n

u r u r n u r n  
 

 
    (18) 

 

where n ( )u r  and n ( )u r  are the amplitudes of, respectively, symmetric (single-barred) and 

anti-symmetric (double-barred) terms, which both depend only on r, but not on θ. In 

practice, only a finite number of harmonics H is used in the summation in Eq. (18). 

Within an element, amplitudes n ( )u r  and n ( )u r  can be interpolated from nodal amplitudes 
1
nu , 2

nu , 1
nu  and 2

nu  (superscript specifies the node number): 
 

   1 2 1 2
1 1 2

0 1
n 2 n n n, ( ) ( ) cos ( ) ( ) sin

n n

u r N r u N r u n N r u N r u n  
 

 

            (19) 

 

where N1(r) and N2(r) are the shape functions, which are linear in a two-node element: 

N1(r)=(r2–r)/L and N2(r)=(r–r1)/L. After some simple matrix algebra, the vector of "strains" 

(derivatives of temperature) in polar coordinates can be written in matrix notation as: 
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












     
                                 

     
  

            
     
  





 (20) 

(for more clarity, explicit dependence on variable r is omitted). Element stiffness matrix for 
harmonic n is calculated as in Eq. (4) or (16). Matrix product inside the integral contains 

terms as (sin2nθ) and (cos2nθ), which integrated from – to + give a factor  (or 2 for n=0). 
The following expression is then obtained (Benasciutti et al., 2011): 

 

1 2

0
1 2

1 2n n n n[ ] [ ][ ] d , [ ] , ,...
L

T
n

N N

r rk k h B D B r r B n
n n

N N
r r



  
               
  

  (21) 

where h is element thickness in z (axial) direction, [D]=diag(λ, λ) is a diagonal matrix with 
material thermal conductivity λ. The integral in Eq. (21) can be solved numerically (Gauss 
quadrature), obtaining a closed form solution. For example, for the two-node element it is:  

  
1 2 1 2

1 2 1 2

0

0
G G G G

n G

G G G G
G G G G

( ) ( ) ( ) ( )

T

x x x x

N N N N

x x x x
k hLr

n n n n
N x N x N x N x

r r r r






      
                    
      

 (22) 

where the two coordinates xG and rG are used to specify the position of Gauss point in the 
element and global reference system, respectively. As it can be seen, element stiffness 
matrix depends on both harmonic n and also on radial position of Gauss point, rG. This 
implies that elements located at different radial positions have different stiffness matrix. 
Analogous expressions can be easily obtained for other elements, similarly to what done 
above. The increase of Gauss points would improve the accuracy of numerical integration 
in Eq. (21). 
Theoretically, it is expected that increasing the node number would improve the numerical 

accuracy of results at the expense of higher computational cost. Element characterised by the 

highest rate of numerical convergence would allow the use of coarser meshes (with less 

number of elements), with a considerable decrease in number of equations to be solved and 

hence a significant reduction in required computational burden. Therefore, the choice of the 

most suitable element for a selected problem represents a crucial step in the analysis. 
A test has been performed to compare the performance (accuracy and convergence rate) of 
different elements. A reference thermal problem is repeatedly solved by different elements, 
having various mesh densities. Considering that computational burden is approximately 
proportional to the number of equations to be solved and, in turn, to the number of nodes in 
the mesh, a comparable computational time would be roughly achieved by different meshes 
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having the same number of nodes. The comparison then assumes that different elements 
have an equivalent mesh if the number of nodes is the same. For example, a mesh with 10 
two-node elements (21 nodes) has approximately an equivalent computational burden to a 
mesh with 20 three-node elements (21 nodes).  
The geometry and thermal load configuration used in test is shown in Fig. 4(a). A constant 

thermal flux is applied over the surface angular sector (π/83π/8), while a zero temperature 

is prescribed on the inner surface. In FE model, thermal flux is converted into equivalent 

nodal loads; a total of H=12 harmonics is used in Fourier series expansion. 
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Fig. 4. (a) Thermal layout used in comparative test (material thermal conductivity is λ=50 
W/mK); (b) converge rate: trend of calculated maximum temperature vs. number of nodes 
in the mesh, for different element types; (c) results accuracy vs. number of harmonics H. 

The comparison is made with reference to the maximum temperature calculated by 
different element and mesh types. Figure 4(b) shows the trend as a function of the number 
of nodes in the mesh (a uniform element density is used); figures quoted in parenthesis 
indicate, as a rough guide, the computational time required by each element. The 
asymptotic value of temperature (for an infinitely fine mesh) has to be interpreted as the 
true (converged) value.  
At a first sight, it appears clear how three-node elements give a much faster convergence 

rate, compared to two-node elements. The best performance (slowest running time) is given 

by three-node element with two Gauss points, which has been used in all subsequent 

simulations (see Fig. 9(a)). Contrarily to what is expected, an increase of Gauss points 

(keeping the element nodes fixed) does not cause any increase in results accuracy (that is to 

say, in coarser meshes better results are obtained with lower Gauss points). 
Another important parameter is the number of harmonics H, which should be chosen as the 
best balance between accuracy and simulation time. Higher H values are expected to give 
higher precision in Fourier expansion of applied loads (especially for step loads), as well as 
better accuracy and higher simulation time. A test is performed to assess the effect of the 
number of harmonic H on accuracy of results and computational speed. Results from semi-
analytical model with different discrete values of H (i.e. 4, 8, 12, 18, etc.) have been 
compared with those by a two-dimensional FE model (commercial code ANSYS® has been 
used). A relative error between the maximum temperature calculated by harmonic model 
and that of plane FE model is also calculated. The comparison is shown in Fig. 4(c); with 
H=12 the absolute relative error is about 1%, as can be seen, while for higher harmonics the 
error rapidly decreases below 0.2%. On the other hand, it has been noted that simulation 
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time in harmonic model increases roughly linearly with H (because equilibrium equations 
are not coupled). Also the approximation error (Gibbs' phenomenon) in Fourier series 
expansion of step-wise periodic functions should be considered carefully in selecting the 
optimal value of H. For the example examined, the best choice would be H=24, which, 
however, does not actually represent a result of general validity. In fact, each problem needs 
to be carefully analyzed to find the best H value. 
Different types of imposed boundary conditions (temperature, flux and convection) have 
been studied in detail. Similarly, a thermal flux applied on boundary elements is converted 
into equivalent nodal loads. Instead, special attention has been deserved to some particular 
boundary conditions, as application of different temperatures on different boundary sectors 
or application of convective heat exchange, see Section 4.3.  

4.2 Transient thermal analysis 
The differential equation of equilibrium governing a transient thermal FE analysis is:  

       [ ]M u K u F   (23) 

where  u  is the vector with derivative of temperatures, [M] and [K] are the "mass" and 

"stiffness" matrices (assembled from the corresponding element matrices), {F} is the vector of 

externally applied loads. For a one-dimensional element, the "mass matrix" is defined as: 

    
0

el[ ] d
L

T
m h c N N r r   (24) 

which depends on shape function matrix [N(x)]=[N1(x) N2(x)], as well as on material 
volumic mass ρ and specific heat c. Unlike matrix [Bn], the "mass matrix" does not explicitly 
depend on the harmonic n, hence it can be calculated only once for all terms of Fourier series 
expansion.  
Explicit expressions for "mass matrix" have been calculated for two- and three-node 
elements (Benasciutti et al., 2011). For example, for a two-node element it is: 
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1 1

2
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1 1
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2 4 312
1

el[ ] dr
L

x x x

r L r LL L L h c
m h c r L

r L r Lx x x

L L L




                                   

  (25) 

where r1 is radial position of node "1" in global reference system. As shown, [mel] depends 

on the position of element in absolute reference system, which means that two elements of 

equal length, but different location in the mesh, would have a different "mass matrix". 
In a FE model, the "mass matrices" for each element in the mesh are assembled, to get a 
global "mass matrix" [M], similarly to assemblage of global "stiffness matrix" [K]. Similarly 
to [K], also [M] is a block diagonal matrix, with non-zero terms close to the main diagonal. 
Mathematically, Eq. (23) represents a system of linear differential equations of second order, 
which in FE procedures are usually solved by numerical methods. In fact, in FE approach 
time domain is represented by a discrete sequence of time instants, in which solution is 
calculated. The time difference between adjacent time instants is the time step Δt.  
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Numerical methods differ in the way the time derivative is approximated. The partial 

differential equation governing a transient thermal analysis can be solved by a finite 

difference method, implemented as an explicit or implicit numerical algorithm: explicit 

methods calculate the state of the system at a later time only considering the state of the 

system at current time, while implicit methods calculate the state of a system at a later time 

by solving an equation involving both the current state of the system and the later one. 

Implicit methods are usually slower (although more accurate) than explicit methods on 

single time step computation, as they require to solve a linear system at each time step. 

Conversely, explicit methods are usually faster, as they do not need to invert matrices. 

In the present study, time integration has been performed by two different numerical 

methods. The first is Forward Finite Difference (FFD) method, which is an explicit method 

proven to be very quick and effective. However, it is said to be "conditionally stable", as it 

requires the time step Δt be smaller than a critical value to get a stable solution. This can 

represent a serious disadvantage, as the need of a stable solution may require a relatively 

small time step, which can result in a very large total simulation time.  

In FFD method, the time derivative in Eq. (23) is approximated as the discrete increment 

      i 1 i
u u u t   , where {u}i and {u}i+1 are the vectors of nodal temperatures 

calculated at consecutive time steps i and i+1. Substituting in Eq. (23) and rearranging, it 

follows the fundamental equation for FFD algorithm: 

             1 1

i 1 i i
u u M t K u t M F

 
       (26) 

Note that "mass matrix" [M] is time-independent, thus it can be inverted only once, with a 

considerable time saving.  
An alternative and completely new original method has been developed for time 
integration. In analogy with the linear acceleration method (Bathe, 1996), the method here 
presented assumes a linear variation of the first derivative, thus it has been called Linear 
Speed Method (LSM); in symbols:  

        i 1 i
i

( )
u u

u u
t

  
 



 
   (27) 

where  i
u  and  i 1

u 
  are the vectors of the derivatives of nodal solutions calculated at 

consecutive time steps i and i+1, while  0 , t    is a dummy time variable. Integration of 

Eq. (27) gives         2
i 1 i 1 i i

u u u t u      ; substituting into Eq. (23) and rearranging, 

gives the fundamental equation of LSM method as: 
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



 

                   
    



 
 (28) 

Unlike FFD algorithm, this method is implicit, as the system in Eq. (28) has to be solved at 
each time step. Furthermore, LSM is also "unconditionally stable" (i.e. solution converges 
independently of the choice of time step). Note that to further improve the computational 
speed, the system in Eq. (28) can be solved by LU factorization. 
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A test has been performed, to compare the relative performance and accuracy of FFD and 
LSM algorithm in semi-analytical approach. The geometry and thermal load configuration 
shown in Fig. 4(a) is analyzed under a physical transient of 900 s, starting from a uniform 
temperature of 0°C. The comparison is made both with a plane FE and a semi-analytical 
model (implemented with FFD method and LSM algorithm, with and without LU 
factorization), with  H=24. Additional material parameters used in simulation are volumic 
mass (ρ=7800 kg/m3) and specific heat (c=460.5 J/kgK). Plane model adopts eight-node 
thermal elements (which have 3 nodes on each side), while harmonic model uses 12 
elements with three nodes and two Gauss points (therefore, both models have the same 
number of nodes along the radial direction). 
 

      

Fig. 5. (a) Errors in calculated maximum temperature vs. time; (b) comparison of 
computational time (the figures quoted are purely indicative). 

The same number of computation steps must be imposed in all FE modes (at least, in 2D and 
1D-LSM), to allow an effective comparison of simulation time. A time step Δt=1 s is chosen, 
so that the interval of 15 minutes (900 s) is divided into 900 time steps. Unfortunately, such a 
value is shown to be inadequate for 1D-FFD model; it is greater than the critical time step, 
thus it causes the numerical solution to not converge (numerical instability). A lower time 
step Δt must then be imposed; for example, an acceptable value is Δt=0.0335 s, although it 
gives a much greater number of time steps (26866) for the same physical transient of 15 
minutes here analyzed.  
In harmonic model, both algorithms (FFD, LSM) have been shown to provide almost 
coincident results, which are also identical to those of 2D model. A time saving for LSM of 
about 4% compared to FFD and even 99% with respect to a plane FE model is observed. The 
use of LU factorization in LSM algorithm further reduced computation time of about one 
third. The above test then revealed that the fastest algorithm for transient thermal analysis is 
LSM method with LU factorization; this has been used in the illustrative example. 

4.3 Boundary conditions 
4.3.1 Prescribed thermal flux and temperature 
In a thermal FE analysis, a prescribed temperature in a node is equivalent to an imposed 
nodal displacement in a structural analysis. In a harmonic model, the temperature value 
imposed on a node would be expanded by the Fourier series to the whole circumference 
(nodal circle) passing through the node. Thus, it appears that in harmonic model only a 
constant temperature could be applied on the boundary, while in practical application it is 
often necessary to prescribe different temperature values along the boundary.  
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This particular boundary condition, however, poses particular numerical problems, due to 
one-dimensional nature of harmonic model. Three methods have been proposed 
(Benasciutti et al., 2011): two of them (fictitious thermal flux, imposed temperature) are 
based on Fourier series expansion of the imposed temperature, the third is based on 
Lagrange multipliers. 
In the first method, the applied temperature is interpreted as a consequence of a fictitious 
thermal flux (unknown) on the same surface portion, which has to be determined. The 
prescribed temperature is expanded in Fourier series, similarly to thermal flux; the 
coefficients for thermal flux expansion are then calculated from those defining the series 
expansion of applied temperature. In the second method, the prescribed temperature is 
treated similarly to an imposed displacement (constraint) in a mechanical analysis, in which 
the equation corresponding to the prescribed degree of freedom is cancelled out in the 
system of equilibrium equations. In the harmonic model, this procedure has to be applied to 
every term in Fourier series expansion. In the third method with Lagrange multipliers, the 
"stiffness matrix" is calculated by a variational approach, which minimises the total potential 
energy Π. In stiffness matrix [k], formed by submatrices [kni], the generic element would be 
kij=∂2Π/∂ui∂uj, where indexes i, j range from 1 to nF·M, with M total number of nodes and nF 
number of Fourier terms. Without going into details, it suffices to say that the method seeks 

the minimum of a total potential energy  , constrained to prescribed temperature: 

    ǃ i j i j i, , , ( )u u u u f u       (29) 

where ǃ is the Lagrange multiplier. As a result, the stiffness matrix calculated by this third 
method is no longer uncoupled, as additional new rows and columns are inserted to 
describe the imposed temperature. 
Illustrative examples showed that the performance (accuracy and computation speed) of all 
three methods is quite comparable, although the third one gives more flexibility in 
representing various boundary conditions. In particular, an imposed temperature and flux 
over the same boundary portion is not possible with the first two methods. The decisive 
advantage of the method using Lagrange multipliers is its possibility to represent any 
variation with angle θ for the prescribed temperature. 

4.3.2 Convection 
A convective flux per unit area is defined as qǂ=ǂ(u–u∞), where ǂ is convection coefficient, u 
the surface temperature and u∞ a reference (bulk) temperature of surrounding medium. A 

convective flux then depends on the surface temperature and may also change over time. 
Then, algorithms for transient analysis can be used to solve convective boundary condition.  
Three different methods with various approximation levels have been developed: one based 
on constant convective coefficient and single average surface temperature, one based on a 
step-wise constant convective flux and average surface temperature, the third based on 
trigonometric formulae (which has been implemented by two different algorithms: 
temperature calculated either at previous or at current time step) (Benasciutti et al., 2011). 

In the first method, the constant convective coefficient  over an angular sector (θ1θ2) is 
expanded in Fourier series, similarly to an imposed thermal flux. The convective heat flux is: 

      2 1 avq h R u u        (30) 
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where uav is the average surface temperature (calculated at previous time iteration), R is the 

radius of the axisymmetric plane body and   0 1 2 1 2{ }T         is the 

vector with series coefficients. Although very simple, this method assumes a constant heat 

flux within sector (θ1θ2); obviously, accuracy decreases as surface temperature shows large 

variations over interval (θ1θ2). An improvement can be obtained by further dividing (θ1θ2) 

into sub-sectors; a step-wise constant convective coefficient and average temperature are 

then calculated in every sub-sector. 
The third method tries to capture the real surface temperature variation within sector 

(θ1θ2). Two separate Fourier series are then used, one describing surface temperature 

relative to bulk temperature u∞, one modelling convective coefficient: 

         2 1 0 0
1 1

n n n n( ) cos sin cos sin
n n

q h R n n u u n u n          
 

 

   
        

   
   (31) 

The product of the two series is further simplified through the well-known prosthaphaeresis 

trigonometric formulae, arriving at the following expression (for node i): 

      2 1
ii ( ) iq h R u          (32) 

where [Αi] is a matrix including amplitudes of Fourier series of  (it can be then calculated 

only once) and  i
u  is a column vector with amplitudes of the surface temperature field u. 

Vector  q  of convective flux is finally computed from  iq  according to global node 

numbering in the mesh. In harmonic FE model, the set of matrices [Ai] are assembled to get 

a global sparse matrix [Α], with same dimension as [K] and [M]. Equation (23) for transient 

thermal analysis can be updated with convective flux: 

          [ ]M u K u F u     (33) 

where {u} can be calculated either at current or next time step. Without going into the 
details, it suffices to say that a numerical test was performed to compare the relative 
performance (accuracy and speed) of methods. The method with constant convective 
coefficient was shown to be not very accurate, as it tends to over-estimate the actual flux 

where surface temperature is lower. A slight improvement (at the expense of higher 
computational time) is achieved with a step-wise constant flux, although an increase in the 
number of surface divisions may cause numerical instability (a smaller Δt must then be 

used). However, the best accuracy is reached by the method with trigonometric functions, 
which also has the lowest computational time (which is slightly lower to that of first 
method). In addition, the test example used did not reveal any difference between the 
algorithms which computes temperature at current or next time step. 

5. Numerical examples 

The numerical examples here discussed address both a mechanical and thermal analysis, 
with the aim of testing the performance and accuracy of semi-analytical approach described 
above. Two different applications are discussed: a shaft under torsion, bending and axial 
mechanical loadings and a rotating cylinder under surface thermal loadings. The study 
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confirms how semi-analytical approach is able to provide accurate results, with in addition a 
strong reduction in computation time, compared with classical two- or three-dimensional FE 
simulation. 

5.1 Mechanical analysis 
A first case study here presented refers to a cylindrical component with a shoulder fillet, 
loaded under torsion, bending and axial load applied at the ends, see Fig. 6(a). The 
geometry shown is a type of stress concentration frequently encountered in shafts, axle 
spindles and rotors machine design. The shoulder fillet is designed to have D/d=1.5, 
r/d=0.1, so that stress concentration factors given by literature (Peterson, 1974) are 
respectively Kt,N=1.88 (axial load), Kt,Mf=1.72 (bending), Kt,Mt=1.37 (torsion). 
This geometry can be solved by a harmonic model; the axial, bending and torsion loads can 
be represented by surface loads expanded in Fourier series as: 

  
0 0r

torsion
θ z 0

z 0,axial 0,bendz,axial z,bend
sin( )

p

p p p

p p p

 
  

    
              

           

 (34) 

where 0 1    is a suitable normalized radial coordinate ( 0   at shaft centre, 1   at 

shaft the outermost radius), used to model the linear variation a torsion load with radius. 

Symbols 0,axial and 0,bend represent the maximum stress for axial and bending loading, 

while τ0 is the maximum shear stress for torsion load. 
The axisymmetric structure under the three different loading configurations can be easily 

solved by using three plane models, see Fig. 6(b)-(d): an axisymmetric model for the axial 

load and an axi-antisymmetric model for torsion; bending can be treated by means of a 

harmonic model, with only one term in Fourier series (in fact, bending stresses follow a 

sinusoidal variation law with respect to symmetry axis).  

 

 
(a) 

 (b) 

 
(c) 

 
(d) 

Fig. 6. (a) Analysed geometry with different applied loads (N axial, Mf bending, Mt torsion); 
(b), (c), (d) plane FE models used in semi-analytical approach, with loads and constraints 
(values of ǂk indicate the numerically calculated stress concentration factors) 
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The figure shows the plane mesh used, as well as the applied loads and constraints. The 
adequacy of the mesh has been tested with a convergence analysis based on the comparison 
of stress concentration factors calculated by increasing levels of mesh refinement. The 
numerical solution given by a three-dimensional FE model with hexahedral elements is also 
used for comparison purposes. The stress concentration factors numerically calculated by 
plane models, shown in Fig. 6, have been compared with theoretical values from manuals 
(Peterson, 1974), as well as with numerical values from three-dimensional FE analysis. The 
overall comparison shows a general good agreement. Compared to three-dimensional 
model, the semi-analytical approach greatly reduces the overall computation time.  
The semi-analytical approach here described can thus be extended to the analysis of a shaft 

loaded axially, in torsion and in bending, showing that the stress distribution can be 
accurately described (at least far from the points where loadings are applied) by using only 
three terms of the Fourier series, i.e. the constant and the first harmonic term. 
A second case study here analysed is thus a simply supported shaft, loaded by non-planar 

distributed loads, see Fig. 7. A three-dimensional model and a plane harmonic model, both 
having similar mesh distributions, have been considered. 
 

 

Fig. 7. Three-dimensional model of a shaft with non-planar loads 

Table 1 shows the maximum tensile stress z close to a fillet radius, normalised to the 

asymptotic stress value z∞ calculated by a three-dimensional FE model with a very refined 
mesh. Figures in parenthesis indicate a rough estimate of computational time required by 
each analysis. 
 

Terms of 
Fourier series 

stress ratio, z zσ σ   (computational time) 

 localised re-meshing no localised re-meshing 

30 1.00 (90 s) 0.92 (90 s) 

7 1.00 (21 s) 0.92 (21 s) 

3 0.98 (9 s) 0.91 (9 s) 

3D model 1.00 (days) 0.84 (12600 s) 

Table 1. Comparison of calculated stress; figures in parenthesis indicate a rough estimate of 
computational time 

Results are reported respectively for the original mesh and after a local refinement close to 

stress concentrations. It is possible to observe that the plane model with only 2 harmonics 

and non-refined mesh gives better results with respect to those achievable with the three-

dimensional model with the same mesh distribution. In the case of a plane model with 
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localised re-meshing, a relevant reduction in the error can be observed, without a significant 

increment of computational time, even if the number of degrees of freedom increases of 

about 10 %. It can be noticed that, with only 3 terms of Fourier series, an error lower than 2% 

can be obtained. Convergence can thus be achieved quite easily with the harmonic model. 

With respect to the harmonic case, the three-dimensional model allows to achieve a similar 

accuracy only at the expense of unfeasible computational times.  

5.2 Thermal analysis 
The second example refers to transient analysis of a rotating cylinder under thermal 

loadings (see Fig. 8), which has been used as a simplified model for a work roll of a hot 

rolling mill (Benasciutti et al., 2010a). In the simplified approach, only work roll (without the 

strip) was modelled in a two-dimensional analysis; thermal loadings are applied on the 

surface, to simulate strip heating and water jet cooling. 

The thermal load configuration used in simulations is shown in Fig. 8(a): an infinitely-long 

cylinder, rotating at constant angular speed and subjected to constant input heat flux and 

convective cooling. The numerical analysis simulates a thermal transient of 3600 seconds, 

which corresponds to about 1690 roll revolutions. At the initial simulation time, work roll is 

assumed at a constant uniform temperature Troll=20°C. Simulation parameters, assumed for 

simplicity as temperature invariant, are summarized in Table 2. 

The work roll configuration in Fig. 8 is an example of axisymmetric structure under non-

axially symmetric thermal loadings, which can be solved by the semi-analytical approach 

previously described. A two-dimensional FE model, implemented by the commercial code 

ANSYS®, is also used for comparison purposes, to test the accuracy of harmonic FE model. 

 

 

Fig. 8. (a) Thermal load configuration analyzed; (b) plane FE model (global and zoom) 

Figure 8(b) shows the plane FE model of work roll. A mesh refinement is imposed near the 
surface, along the tangential and radial directions, to capture the thermal gradient here 
expected. Small elements are located for a depth of 10% of work roll radius, with even 

smaller elements placed immediately underneath the surface, for a depth of 2% of radius. 
Since in FE analysis rigid body motion is not allowed, work roll rotation has been simulated 
by considering the roll at rest and by applying rotating thermal loadings. As an order of 
magnitude, the simulation required about 3 days of simulation. It is worth mentioning how 

results of thermal analysis have been validated, see (Benasciutti et al., 2010b), by an 
analytical solution for the stationary temperature distribution (Patula, 1981). Other details 
on FE model and simulation parameters can be found in (Benasciutti 2010a). 
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Parameter Value 

R=300 mm Cylinder radius 

ω=2,953 rad/s Cylinder angular speed 

 = 10° Heating sector 

 = 45° Angular gap between heating and cooling 

Ψ = 90° Cooling sector 

q0=13,7×106 W/m2 Input thermal flux 

ǂ=10100 W/m2K Convection coefficient 

T0=20°C Bulk temperature of cooling medium 

Troll=20°C Initial temperature of work roll 

Table 2. Several geometrical and thermal parameters used in simulations 

In semi-analytical approach, the 2D geometry of work roll in Fig. 8(a) is represented by a 1D 
model. A three-node element with two Gauss points is used, see Fig. 9(a); the mesh, shown 
in Fig. 9 (b), has a total amount of 28 elements and 57 nodes. Note that, for an effective 
comparison, both 1D and 2D models have an identical element distribution in radial 
direction, compare Fig. 8(b) with Fig. 9 (b). In addition, the same time step in transient 
analysis has been chosen for both models, to allow a comparison of running times. 
In harmonic model, the choice of the correct number of harmonic H is critical, especially for 
the load configuration in Fig. 8 (a), where a stepped flux is applied over a very small angle 

(=10°). In fact, in Fourier series expansion the approximation error tends to increase as step 
width decreases, because of Gibbs' phenomenon at jump discontinuity; the error could be 
minimized by an appropriate high number of harmonics. Several benchmark tests were 
performed (Benasciutti et al., 2011) to identify the optimal number of harmonics for the 
configuration here analyzed. A comparison of the maximum transient temperature, 
calculated by plane model and various harmonic models with different number of 
harmonics revealed that H=100 would be an optimal compromise between accuracy and 
computing time. 
 

 

Fig. 9. (a) Three-node element with two Gauss points; (b) mesh (each dot point is a node) 

For simulation of convective cooling, the choice is between two algorithms based on 
trigonometric functions. For H=100 harmonics, the test revealed that algorithm based on 
temperature computed at previous time step is faster (of about 20%) than algorithm which 
computes temperature at current time step, although both give comparable accuracy 
levels. 
Conversely to plane FE approach, which needs that work roll must be fixed and thermal 
loads rotating, in harmonic model two options are available: work roll fixed with rotating 

thermal loading, or vice versa. A comparative study (Benasciutti et al., 2011) showed that 
both methods give similar running times, with the first one (work roll fixed) slightly faster 
(and also more simple to implement) than the second. Therefore, method with rotating 
thermal loading has been preferred. 

(a) (b) 
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Fig. 10. Temperature distribution in work roll after 1800 s given by plane FE model. 

Results for thermal simulations are presented from Fig. 10 to Fig. 13 . For example, Fig. 10 
shows the temperature field in work roll after 1800 seconds calculated by plane FE model. 
The temperature map at other time instants (not included here) would show a progressive 
heating of the entire work roll, with the largest temperature gradients localised very close to 
the surface (which justifies the use there of very small elements in the mesh). The 
temperature field calculated by semi-analytical FE model is not provided, as it is very 
similar to that given by plane FE model. 
 

 

Fig. 11. Temperature history for a point on work roll surface: (a) plane and (b) harmonic FE 
model. 

Figure 11, instead, compares the temperature time history within a 60-seconds time interval, 

for a point located on work roll surface. Each peak temperature occurs when the monitored 

point enters the heating zone, thus the series of equally-spaced peaks identifies the sequence 

of work roll rotations. The progressive increase of peak temperature in consecutive rotations 

confirms the transient nature of the thermal phenomenon here investigated. A very similar 

trend is observed for both FE models; the small differences may be attributed to the different 

rate of results saving on computer hard disk. 

The result shown in Fig. 12 refers instead to the radial temperature distribution at next time 

instants. Only temperature distribution for plane FE model is shown, as that calculated by 

harmonic model would be practically coincident . The continuous temperature increase with 

time, especially inside the work roll, is indicated by the different curves. Both diagrams also 
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Fig. 12. Radial temperature at different time instants for plane FE model. 

confirm that work roll remains at a rough uniform temperature, except for a very small 
portion very close to the surface (wide about 1% of roll radius), where a steep temperature 
gradient is observed (note that diagrams only plot radial coordinates close to roll surface). 
The extremely localized nature of temperature variation within this narrow region is usually 
called "thermal boundary layer" in technical literature. 
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Fig. 13. Temperature time history for points at different radial depths, along the same 
angular position. (a) plane and (b) harmonic FE model. 

Finally, Fig. 13 shows the temperature change for points at different radial depths, along a 
fixed angular position. A close agreement between semi-analytical and plane FE models is 
confirmed. The figure further emphasizes that the thermal gradient is confined in a small 
region close to the boundary. In fact, on work roll surface the temperature ranges of about 
200°C, while at 1 mm depth from surface the variation is only 100 °C, and even negligible at 
6 mm below surface. In addition, the detail in the same figure highlights a sort of "thermal 
inversion" phenomenon induced by forced convection cooling, in which the work roll 
material on the surface is at a lower temperature than material inside. The lateral expansion 
of surface elements, prevented by the surrounding elements at lower temperature, is the 
basic mechanism which explains the development of thermal stresses in work roll. 

6. Conclusions 

This work has investigated theory and application of simplified FE approaches for the 
analysis of axisymmetric structures loaded by non-axisymmetric loadings. The aim was to 
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develop alternative FE methods, which allow obtaining the solution of complex three-
dimensional problems through a combination of several simpler and faster one- and two-
dimensional analyses, which usually require reduced computational efforts. The study has 
focused on both mechanical and thermal problems, in which the structure is axisymmetric, 
but the load is not.  
In the mechanical context, the classical axisymmetric stress analysis has been first reviewed 
from literature, as it constitutes a reference example for the subsequent discussion. Using a 
similar approach, an original finite element is next developed, for solving axisymmetric 
structures under axi-antisymmetric applied loads, as for example a shaft under a torsion 
load. General equations for displacement field, strain and stress have been derived. 
Another and more general class of problems is that of axisymmetric structures loaded non-
axisymmetrically, which are solved by a semi-analytical finite element approach based on 
Fourier series expansion of applied loads and displacement field. In a linear analysis, the 
harmonics in Fourier series are totally uncoupled due to orthogonality property of 
trigonometric functions. Therefore, a complex three-dimensional problem is solved by 
superposition of solutions of several two-dimensional analyses, or similarly a two-
dimensional problem is replaced by several one-dimensional analyses. A considerable 
reduction in computational times and computer resources is then achieved. The theoretical 
framework for harmonic finite element analysis has been first presented, as the fundamental 
equation for stiffness matrix and the stress/strain relations. The performance of the semi-
analytical approach is discussed with a numerical example: a shaft with a shoulder filled 
under respectively an axial, bending and torsion loading. The stress concentration factors 
calculated by harmonic model are compared with values provided by manuals. The study 
has confirmed that harmonic model is capable to predict with great accuracy the stress 
concentration factors of a three-dimensional geometry under three different loading 
conditions, by using simple two-dimensional models. A second case study showed that the 
case of a shaft loaded by non-planar loads can be solved quite easily by using a harmonic 
model with only three terms of the Fourier series. This approach gives a relevant advantage 
in terms of computational time compared to three-dimensional modelling. 
For what concerns thermal problems, it has been developed a harmonic finite element 
approach for the steady-state and transient thermal analysis of two-dimensional 
axisymmetric structures under non-axisymmetric thermal loadings. The theory of different 
types of one-dimensional finite element has been derived: two-node elements (with one or 
two Gauss points) or three-node elements (with two or four Gauss points). The relative 
performance of all elements has been compared in terms of accuracy and computation 
speed; the best performance is provided by three-node element with two Gauss points. Also 
the choice of the number of harmonic is investigated with a benchmark test.  
For transient thermal analysis, explicit expression of "mass matrix" for the two-node element 
has been presented. Furthermore, two algorithms for numerical time integration has been 
introduced: the Fast Forward Difference (FFD) and the completely original Linear Speed Method 
(LSM), also implemented by LU factorization. A benchmark test revealed that the fastest 
algorithm for transient analysis is LSM with LU factorization. An illustrative example is 
finally discussed, which refers to a rotating cylinder under thermal loadings, used as a 
simplified model for work roll in hot rolling mill. The transient temperature distribution is 
estimated by a semi-analytical approach and a plane FE model. The harmonic model has 
been shown to give results in very close agreement with those of plane FE model, with 
however a significant reduction of total simulation time.  
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The presented results have confirmed the great reliability offered by semi-analytical 
approach, in providing accurate results with at the same time a significant reduction in 
computational times, compared to classical FE analyses. 
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