153 research outputs found

    Higher spectral flow and an entire bivariant JLO cocycle

    Full text link
    Given a smooth fibration of closed manifolds and a family of generalised Dirac operators along the fibers, we define an associated bivariant JLO cocycle. We then prove that, for any ℓ≥0\ell \geq 0, our bivariant JLO cocycle is entire when we endow smoooth functions on the total manifold with the Cℓ+1C^{\ell+1} topology and functions on the base manifold with the CℓC^\ell topology. As a by-product of our theorem, we deduce that the bivariant JLO cocycle is entire for the Fr\'echet smooth topologies. We then prove that our JLO bivariant cocycle computes the Chern character of the Dai-Zhang higher spectral flow

    Enlargeability, foliations, and positive scalar curvature

    Full text link
    We extend the deep and important results of Lichnerowicz, Connes, and Gromov-Lawson which relate geometry and characteristic numbers to the existence and non-existence of metrics of positive scalar curvature (PSC). In particular, we show: that a spin foliation with Hausdorff homotopy groupoid of an enlargeable manifold admits no PSC metric; that any metric of PSC on such a foliation is bounded by a multiple of the reciprocal of the foliation K-area of the ambient manifold; and that Connes' vanishing theorem for characteristic numbers of PSC foliations extends to a vanishing theorem for Haefliger cohomology classes.Comment: To appear in Inventiones Mathematicae. We have made a minor editing chang

    An interesting example for spectral invariants

    Full text link
    In "Illinois J. of Math. {\bf 38} (1994) 653--678", the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then showed that the associated heat operator converges to the Chern character of the index bundle of the operator. In "J. K-Theory {\bf 1} (2008) 305--356", we improved this result by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.Comment: Third author added. Some typos corrected and some material added. Appeared in Journal of K Theory, Volume 13, in 2014, pages 305 to 31

    Higher relative index theorems for foliations

    Full text link
    In this paper we solve the general case of the cohomological relative index problem for foliations of non-compact manifolds. In particular, we significantly generalize the groundbreaking results of Gromov and Lawson, [GL83], to Dirac operators defined along the leaves of foliations of non-compact complete Riemannian manifolds, by involving all the terms of the Connes-Chern character, especially the higher order terms in Haefliger cohomology. The zero-th order term corresponding to holonomy invariant measures was carried out in [BH21] and becomes a special case of our main results here. In particular, for two leafwise Dirac operators on two foliated manifolds which agree near infinity, we define a relative topological index and the Connes-Chern character of a relative analytic index, both being in relative Haefliger cohomology. We show that these are equal. This invariant can be paired with closed holonomy invariant currents (which agree near infinity) to produce higher relative scalar invariants. When we relate these invariants to the leafwise index bundles, we restrict to Riemannian foliations on manifolds of sub-exponential growth. This allows us {to prove a higher relative index bundle theorem}, extending the classical index bundle theorem of [BH08]. Finally, we construct examples of foliations and use these invariants to prove that their spaces of leafwise positive scalar curvature metrics have infinitely many path-connected components, completely new results which are not available from [BH21]. In particular, these results confirm the well-known idea that important geometric information of foliations is embodied in the higher terms of the A-hat genus

    Topological quantization of boundary forces and the integrated density of states

    Full text link
    For quantum systems described by Schr\"odinger operators on the half-space \RR^{d-1}\times\RR^{leq 0} the boundary force per unit area and unit energy is topologically quantised provided the Fermi energy lies in a gap of the bulk spectrum. Under this condition it is also equal to the integrated density of states at the Fermi energy.Comment: 7 page
    • …
    corecore