22 research outputs found

    Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter's transformation

    Get PDF
    Biomarcadors; Ibrutinib; Limfoma no hodgkinBiomarkers; Ibrutinib; Non-hodgkin's lymphomaBiomarcadores; Ibrutinib; Linfoma no hodgkinWe analyzed potential biomarkers of response to ibrutinib plus nivolumab in biopsies from patients with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Richter's transformation (RT) from the LYM1002 phase I/IIa study, using programmed death ligand 1 (PD-L1) immunohistochemistry, whole exome sequencing (WES), and gene expression profiling (GEP). In DLBCL, PD-L1 elevation was more frequent in responders versus nonresponders (5/8 [62.5%] vs. 3/16 [18.8%]; p = 0.065; complete response 37.5% vs. 0%; p = 0.028). Overall response rates for patients with WES and GEP data, respectively, were: DLBCL (38.5% and 29.6%); FL (46.2% and 43.5%); RT (76.5% and 81.3%). In DLBCL, WES analyses demonstrated that mutations in RNF213 (40.0% vs. 6.2%; p = 0.055), KLHL14 (30.0% vs. 0%; p = 0.046), and LRP1B (30.0% vs. 6.2%; p = 0.264) were more frequent in responders. No responders had mutations in EBF1, ADAMTS20, AKAP9, TP53, MYD88 , or TNFRSF14 , while the frequency of these mutations in nonresponders ranged from 12.5% to 18.8%. In FL and RT, genes with different mutation frequencies in responders versus nonresponders were: BCL2 (75.0% vs. 28.6%; p = 0.047) and ROS1 (0% vs. 50.0%; p = 0.044), respectively. Per GEP, the most upregulated genes in responders were LEF1 and BTLA (overall), and CRTAM (germinal center B-cell–like DLBCL). Enriched pathways were related to immune activation in responders and resistance-associated proliferation/replication in nonresponders. This preliminary work may help to generate hypotheses regarding genetically defined subsets of DLBCL, FL, and RT patients most likely to benefit from ibrutinib plus nivolumab.Sponsored by Janssen Research & Development, LLC

    Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter's transformation

    Get PDF
    We analyzed potential biomarkers of response to ibrutinib plus nivolumab in biopsies from patients with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Richter's transformation (RT) from the LYM1002 phase I/IIa study, using programmed death ligand 1 (PD-L1) immunohistochemistry, whole exome sequencing (WES), and gene expression profiling (GEP). In DLBCL, PD-L1 elevation was more frequent in responders versus nonresponders (5/8 [62.5%] vs. 3/16 [18.8%]; p = 0.065; complete response 37.5% vs. 0%; p = 0.028). Overall response rates for patients with WES and GEP data, respectively, were: DLBCL (38.5% and 29.6%); FL (46.2% and 43.5%); RT (76.5% and 81.3%). In DLBCL, WES analyses demonstrated that mutations in RNF213 (40.0% vs. 6.2%; p = 0.055), KLHL14 (30.0% vs. 0%; p = 0.046), and LRP1B (30.0% vs. 6.2%; p = 0.264) were more frequent in responders. No responders had mutations in EBF1, ADAMTS20, AKAP9, TP53, MYD88, or TNFRSF14, while the frequency of these mutations in nonresponders ranged from 12.5% to 18.8%. In FL and RT, genes with different mutation frequencies in responders versus nonresponders were: BCL2 (75.0% vs. 28.6%; p = 0.047) and ROS1 (0% vs. 50.0%; p = 0.044), respectively. Per GEP, the most upregulated genes in responders were LEF1 and BTLA (overall), and CRTAM (germinal center B-cell-like DLBCL). Enriched pathways were related to immune activation in responders and resistance-associated proliferation/replication in nonresponders. This preliminary work may help to generate hypotheses regarding genetically defined subsets of DLBCL, FL, and RT patients most likely to benefit from ibrutinib plus nivoluma

    Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma

    Get PDF
    Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients

    Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    No full text
    Neurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%. It occurred as the initial manifestation of malignancy in 26% of cases. The affected neural structures included peripheral nerves (60%), spinal nerve roots (48%), cranial nerves (46%), and plexus (40%) with multiple site involvement in 58%. Imaging studies often suggested the diagnosis with 77% positive magnetic resonance imaging, and 84% (16 of 19) positive computed tomography-positron emission tomography studies. Cerebrospinal fluid cytology was positive in 40%, and nerve biopsy confirmed the diagnosis in 23 of 26 (88%). Treatment in 47 patients included systemic chemotherapy (70%), intra-cerebrospinal fluid chemotherapy (49%), and radiotherapy (34%). Response to treatment was observed in 46%. The median overall survival was 10 months, with 12- and 36-month survival proportions of 46% and 24%, respectively. NL is a challenging diagnosis, but contemporary imaging techniques frequently detect the relevant neural invasion. An aggressive multimodality therapy can prevent neurologic deterioration and is associated with a prolonged survival in a subset of patients

    Bortezomib or high-dose dexamethasone for relapsed multiple myeloma

    No full text
    BACKGROUND: This study compared bortezomib with high-dose dexamethasone in patients with relapsed multiple myeloma who had received one to three previous therapies. METHODS: We randomly assigned 669 patients with relapsed myeloma to receive either an intravenous bolus of bortezomib (1.3 mg per square meter of body-surface area) on days 1, 4, 8, and 11 for eight three-week cycles, followed by treatment on days 1, 8, 15, and 22 for three five-week cycles, or high-dose dexamethasone (40 mg orally) on days 1 through 4, 9 through 12, and 17 through 20 for four five-week cycles, followed by treatment on days 1 through 4 for five four-week cycles. Patients who were assigned to receive dexamethasone were permitted to cross over to receive bortezomib in a companion study after disease progression. RESULTS: Patients treated with bortezomib had higher response rates, a longer time to progression (the primary end point), and a longer survival than patients treated with dexamethasone. The combined complete and partial response rates were 38 percent for bortezomib and 18 percent for dexamethasone (P<0.001), and the complete response rates were 6 percent and less than 1 percent, respectively (P<0.001). Median times to progression in the bortezomib and dexamethasone groups were 6.22 months (189 days) and 3.49 months (106 days), respectively (hazard ratio, 0.55; P<0.001). The one-year survival rate was 80 percent among patients taking bortezomib and 66 percent among patients taking dexamethasone (P=0.003), and the hazard ratio for overall survival with bortezomib was 0.57 (P=0.001). Grade 3 or 4 adverse events were reported in 75 percent of patients treated with bortezomib and in 60 percent of those treated with dexamethasone. CONCLUSIONS: Bortezomib is superior to high-dose dexamethasone for the treatment of patients with multiple myeloma who have had a relapse after one to three previous therapies. Copyrigh
    corecore