1,116 research outputs found

    Genetic Drift Shapes the Evolution of a Highly Dynamic Metapopulation

    Get PDF
    The dynamics of extinction and (re)colonization in habitat patches are characterizing features of dynamic metapopulations, causing them to evolve differently than large, stable populations. The propagule model, which assumes genetic bottlenecks during colonization, posits that newly founded subpopulations have low genetic diversity and are genetically highly differentiated from each other. Immigration may then increase diversity and decrease differentiation between subpopulations. Thus, older and/or less isolated subpopulations are expected to have higher genetic diversity and less genetic differentiation. We tested this theory using whole-genome pool-sequencing to characterize nucleotide diversity and differentiation in 60 subpopulations of a natural metapopulation of the cyclical parthenogen Daphnia magna. For comparison, we characterized diversity in a single, large, and stable D. magna population. We found reduced (synonymous) genomic diversity, a proxy for effective population size, weak purifying selection, and low rates of adaptive evolution in the metapopulation compared with the large, stable population. These differences suggest that genetic bottlenecks during colonization reduce effective population sizes, which leads to strong genetic drift and reduced selection efficacy in the metapopulation. Consistent with the propagule model, we found lower diversity and increased differentiation in younger and also in more isolated subpopulations. Our study sheds light on the genomic consequences of extinction-(re)colonization dynamics to an unprecedented degree, giving strong support for the propagule model. We demonstrate that the metapopulation evolves differently from a large, stable population and that evolution is largely driven by genetic drift.Peer reviewe

    The SED Machine: a robotic spectrograph for fast transient classification

    Get PDF
    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come on line. At the present time, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing "follow-up drought". Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R\sim100) integral field unit (IFU) spectrograph with "Rainbow Camera" (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already proved lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized to spectral classification. Introduction of similar spectrographs on existing telescopes will help alleviate the follow-up drought and thereby accelerate the rate of discoveries.Comment: 21 pages, 20 figure

    First impressions and perceived roles: Palestinian perceptions on foreign aid

    Get PDF
    This paper summarizes some results of a wider research on foreign aid that was conducted in the West Bank and Gaza Strip in 2010. It seeks to describe the impressions and feelings of Palestinian aid beneficiaries as well as the roles and functions they attached to foreign aid. To capture and measure local perceptions on Western assistance a series of individual in depth interviews and few focus group interviews were conducted in the Palestinian territories. The interview transcripts were processed by content analysis. As research results show — from the perspective of aid beneficiaries — foreign aid is more related to human dignity than to any economic development. All this implies that frustration with the ongoing Israeli-Palestinian conflict inevitably embraces the donor policies and practices too

    Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.Comment: Accepted to ApJ, 6 page

    Elimination of Transcoarctation Pressure Gradients Has No Impact on Left Ventricular Function or Aortic Shear Stress After Intervention in Patients With Mild Coarctation

    Get PDF
    Objectives: This study sought to investigate the impact of transcatheter intervention on left ventricular function and aortic hemodynamics in patients with mild coarctation of the aorta (COA). Background: The optimal method and timing of transcatheter intervention for COA remains unclear, especially when the severity of COA is mild (peak-to-peak transcoarctation pressure gradient  < 20 mm Hg). Debate rages regarding the risk/benefit ratio of intervention versus long-term effects of persistent minimal gradient in this heterogeneous population with differing blood pressures, ventricular function, and peripheral perfusion. Methods: We developed a unique computational fluid dynamics and lumped parameter modeling framework based on patient-specific hemodynamic input parameters and validated it against patient-specific clinical outcomes (before and after intervention). We used clinically measured hemodynamic metrics and imaging of the aorta and the left ventricle in 34 patients with mild COA to make these correlations. Results: Despite dramatic reduction in the transcoarctation pressure gradient (catheter and Doppler echocardiography pressure gradients reduced by 75% and 47.3%, respectively), there was only modest effect on aortic flow and no significant impact on aortic shear stress (the maximum time-averaged wall shear stress in descending aorta was reduced 5.1%). In no patient did transcatheter intervention improve left ventricular function (e.g., stroke work and normalized stroke work were reduced by only 4.48% and 3.9%, respectively). Conclusions: Transcatheter intervention that successfully relieves mild COA pressure gradients does not translate to decreased myocardial strain. The effects of the intervention were determined to the greatest degree by ventricular–vascular coupling hemodynamics and provide a novel valuable mechanism to evaluate patients with COA that may influence clinical practice. Key Words: aortic hemodynamics, left ventricle function, mild coarctation, peak-to-peak pressure gradient, transcatheter interventionNational Institute of Mental Health (U.S.) (R01 GM 49039)American Heart Association (Postdoctoral Fellowship 16POST26420039

    Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations

    Get PDF
    There is a growing number of supernovae (SNe), mainly of Type IIn, which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to some poorly charted phenomena in the final stages of stellar evolution. Here we present a sample of 16 SNe IIn for which we have Palomar Transient Factory (PTF) observations obtained prior to the SN explosion. By coadding these images taken prior to the explosion in time bins, we search for precursor events. We find five Type IIn SNe that likely have at least one possible precursor event, three of which are reported here for the first time. For each SN we calculate the control time. Based on this analysis we find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, more than 50% of SNe IIn have at least one pre-explosion outburst that is brighter than absolute magnitude -14, taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely larger than one per year, and fainter precursors are possibly even more common. We also find possible correlations between the integrated luminosity of the precursor, and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.Comment: 15 pages, 20 figures, submitted to Ap

    SN2010jp (PTF10aaxi): A Jet-Driven Type II Supernova

    Get PDF
    We present photometry and spectroscopy of the peculiar TypeII supernova (SN) 2010jp, also named PTF10aaxi. The light curve exhibits a linear decline with a relatively low peak absolute magnitude of only -15.9, and a low radioactive decay luminosity at late times that suggests a nickel mass below 0.003 MM_{\odot}. Spectra of SN2010jp display an unprecedented triple-peaked Hα\alpha line profile, showing: (1) a narrow (800 km/s) central component that suggests shock interaction with dense CSM; (2) high-velocity blue and red emission features centered at -12600 and +15400 km/s; and (3) broad wings extending from -22000 to +25000 km/s. These features persist during 100 days after explosion. We propose that this line profile indicates a bipolar jet-driven explosion, with the central component produced by normal SN ejecta and CSM interaction at mid latitudes, while the high-velocity bumps and broad line wings arise in a nonrelativistic bipolar jet. Two variations of the jet interpretation seem plausible: (1) A fast jet mixes 56Ni to high velocities in polar zones of the H-rich envelope, or (2) the reverse shock in the jet produces blue and red bumps in Balmer lines when a jet interacts with dense CSM. Jet-driven SNeII are predicted for collapsars resulting from a wide range of initial masses above 25 MM_{\odot} at sub-solar metallicity. This seems consistent with the SN host environment, which is either an extremely low-luminosity dwarf galaxy or very remote parts of an interacting pair of star-forming galaxies. It also seems consistent with the low 56Ni mass that may accompany black hole formation. We speculate that the jet survives to produce observable signatures because the star's H envelope was mostly stripped away by previous eruptive mass loss.Comment: 11 pages, 9 figures, submitted to MNRA
    corecore