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Abstract
The dynamics of extinction and (re)colonization in habitat patches are characterizing features of dynamic metapo
pulations, causing them to evolve differently than large, stable populations. The propagule model, which assumes 
genetic bottlenecks during colonization, posits that newly founded subpopulations have low genetic diversity and 
are genetically highly differentiated from each other. Immigration may then increase diversity and decrease differ
entiation between subpopulations. Thus, older and/or less isolated subpopulations are expected to have higher gen
etic diversity and less genetic differentiation. We tested this theory using whole-genome pool-sequencing to 
characterize nucleotide diversity and differentiation in 60 subpopulations of a natural metapopulation of the cyclical 
parthenogen Daphnia magna. For comparison, we characterized diversity in a single, large, and stable D. magna 
population. We found reduced (synonymous) genomic diversity, a proxy for effective population size, weak purifying 
selection, and low rates of adaptive evolution in the metapopulation compared with the large, stable population. 
These differences suggest that genetic bottlenecks during colonization reduce effective population sizes, which leads 
to strong genetic drift and reduced selection efficacy in the metapopulation. Consistent with the propagule model, 
we found lower diversity and increased differentiation in younger and also in more isolated subpopulations. Our 
study sheds light on the genomic consequences of extinction–(re)colonization dynamics to an unprecedented de
gree, giving strong support for the propagule model. We demonstrate that the metapopulation evolves differently 
from a large, stable population and that evolution is largely driven by genetic drift.

Key words: metapopulation, genomics, turnover dynamics, daphnia, cladocera, crustacea.

Introduction
Metapopulations, i.e., subpopulations interconnected by 
extinction–(re)colonization dynamics, are ubiquitous 
(Hanski et al. 2017). They differ from classical, large and 
stable, populations (with or without spatial structure) 
due to this extinction–(re)colonization dynamic, a feature 
that introduces recurrent genetic bottlenecks during the 
founding of new subpopulations (Hanski 1999; Hanski 
et al. 2017; Wang and Altermatt 2019). In early population 
genetic models, extinction–(re)colonization dynamics 
received little attention. Only after Levins (1969) first in
troduced the concept of a metapopulation, primarily to 
address ecological questions, population geneticists 
sought to discover how metapopulation dynamics affect 
variation in genetic diversity and differentiation (Giles 
and Goudet 1997; McCauley 1989; McCauley et al. 1995; 
Slatkin 1977; Wade and McCauley 1988; Whitlock 1992; 
Whitlock and McCauley 1990). As suggested by the 

propagule model (Slatkin 1977), new subpopulations are 
founded when empty habitat patches are colonized by 
one or a few individuals, often originating from a single 
source population. The genetic bottlenecks can then 
lead to high genetic differentiation among new subpopu
lations and low diversity within subpopulations, and thus, 
low effective population sizes. These effects, in turn, lead to 
increased genetic drift and genetic load (Cosentino et al. 
2012; Montero-Pau et al. 2018; Saastamoinen et al. 2018; 
Tortajada et al. 2009; Waples 2017). Conversely, mutation 
and gene flow can have the opposite effect in metapopu
lations (Hanski and Gaggiotti 2004; Pannell and 
Charlesworth 2000): with a continued occurrence of muta
tions and influx of immigrants, older subpopulations 
might become genetically more diverse. Due to the ex
change of migrants, subpopulations may become less dif
ferentiated from each other than newly founded 
subpopulations.
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Ecological factors that contribute to evolution may vary 
among metapopulations (Bonte and Bafort 2019; Hedrick 
and Gilpin 1997; Ingvarsson et al. 1997; Molofsky and Ferdy 
2005; Pannell and Charlesworth 2000), with turnover (ex
tinction–(re)colonization dynamics) and population size 
(often correlated with habitat size) playing an important 
role. These factors affect the probability of allele fixation 
in (sub)populations (Charlesworth 2009; Johri et al. 2021; 
Whitlock 2003). Specifically, the fixation probability of an 
emerging allele depends not only on its selection coeffi
cient, but also on the effective size, Ne, of subpopulations 
and the degree of population structure (Charlesworth 
et al. 2003; Vuilleumier et al. 2008; Whitlock 2003). 
Variations in population size and structure, as well as their 
influence on the evolutionary process, can be studied using 
population genetic summary statistics, such as (non)syn
onymous genomic diversity, πN and πS, and the rate of 
(non)adaptive nonsynonymous substitutions, ωNA and 
ωA. Thus, population genetics can help to determine the 
ecological setting of a particular metapopulation and 
give insight into how evolutionary mechanisms differ 
among metapopulations (Gaggiotti and Foll 2010).

Hedrick and Gilpin (1997) were among the first to discuss 
the factors that influence evolution in metapopulations, but 
these issues have not been much addressed in metapopula
tion genetic studies (but see, e.g., Montero-Pau et al. (2018)
for a theoretical model). Metapopulations with stable sub
populations resemble the island model of connected 
Wright–Fisher populations (Wright 1931). In these metapo
pulations, genetic bottlenecks are rare or weak, so evolution 
is expected to be predominantly driven by natural selection 
(Ronce 2007; Whitlock 2004), and local adaptation can help 
to maintain or promote population differentiation and 
counteract gene flow that would otherwise reduce subpo
pulation’s differentiation (Szép et al. 2021). The benthic 
reef gastropod Haliotis laevigata in southern Australia is 
an example of this kind of metapopulation with large effect
ive population sizes, high connectivity, and low turnover 
(Sandoval-Castillo et al. 2018).

Strong and frequent bottlenecks can lead to small ef
fective population sizes in which genetic drift predomi
nates (Charlesworth et al. 2003). This process, in turn, 
weakens natural selection against deleterious mutations 
and rates of adaptive evolution. The North American 
Gila Trout (Oncorhynchus gilae) shows this pattern of me
tapopulation with small effective population sizes, low 
gene flow, and genomic bottlenecks (Camak et al. 2021). 
The bottlenecks and the associated low effective popula
tion sizes accelerate the accumulation and fixation of dele
terious mutations, which reduces the mean fitness, 
referred to as local drift load (Whitlock 2004). In extreme 
cases, it results in a mutational meltdown of populations 
(Lynch et al. 1995). Gene flow can counteract this process, 
introducing new genotypes into a population. In case of 
hybrid offspring between immigrants and local residents, 
high drift load can lead to a fitness advantage via hybrid 
vigor and the subsequent purging of deleterious mutations 
(Ebert et al. 2002; Whitlock et al. 2000).

Systems with clearly defined subpopulations facilitate 
the study of metapopulation dynamics and their effect 
on the evolutionary process. Pond-dwelling organisms oc
cur in distinct water bodies, making population boundar
ies easy to define. Here, we focus on a pond-dwelling 
species, the cyclically parthenogenetic microcrustacean 
Daphnia magna, which forms a large metapopulation on 
the Skerry Islands of southwestern Finland and along the 
Swedish east coast. As previous findings have suggested, 
this metapopulation follows the propagule model and is 
highly dynamic, i.e., characterized by small and unstable 
subpopulations, high extinction–(re)colonization dynam
ics, and strong colonization bottlenecks (Altermatt 
and Ebert 2010; Ebert et al. 2013; Fields et al. 2018; 
Zumbrunn 2011). A long-term survey of this metapopula
tion (Dubart et al. 2020; Ebert et al. 2013; Pajunen and 
Pajunen 2003) has revealed high turnover rates: of the 
20% of the rock pools that contain D. magna subpopula
tions, about 20% go extinct every year, and about 5% of 
the empty ponds are colonized per year. This metapopula
tion has been shown to be an “inverse mainland-island” 
type of metapopulation (Altermatt and Ebert 2010), where 
the pool of migrants primarily comes from small ponds 
with small subpopulations. Such small ponds dry up 
more likely exposing the sediment-borne resting stages 
of D. magna to wind and animals. Empty habitat patches 
are primarily colonized (∼90% of the time) by single coloni
zers that then undergo clonal expansion (Haag et al. 2005). 
Isolated aspects of the system are well understood using 
phenotypic data (Lohr and Haag 2015) and genetic marker 
analysis (Haag et al. 2005; Walser and Haag 2012). For ex
ample, bottlenecks lead to low genetic diversity and genetic 
load (Haag et al. 2005), while immigration and subsequent 
hybridization lead to selection for hybrid genotypes (hybrid 
vigor) and elevated effective migration rates (Ebert et al. 
2002). However, because multiple of these aspects act to
gether and occur at different frequencies in time and space, 
it raises the question of the contribution of genetic drift and 
natural selection to the evolution in this metapopulation. 
For example, how does evolution at (non)synonymous sites 
in the nuclear genome vary in this metapopulation com
pared with in large stable populations?

In this D. magna metapopulation genomic study, we use 
allele frequency and ecological data to test our hypotheses 
about (1) genomic diversity, (2) population differentiation, 
and (3) (non)adaptive evolution. Our objective is to 
understand how this metapopulation evolves and, more 
generally, how evolution in metapopulations differs from 
the evolution in larger, stable populations. Considering 
Haag et al. (2005), who partially explained genetic diversity 
by a pond’s age and its distance from the sea based on 
three allozyme markers in the same metapopulation and 
suggested that populations in less stable ponds closer to 
the sea face a higher risk of extinction, we revisit the effects 
of age, ecology, and geography on genomic diversity using 
whole-genomic data. We expect source sampling under 
the propagule model in our system to lead to lower genom
ic diversity in newly established D. magna subpopulations 
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than in older ones. Regarding population differentiation, 
recurrent genomic bottlenecks might lead to high differenti
ation between founder populations, which might, however, 
erode over time due to gene flow (Haag et al. 2005). This 
high differentiation between founder populations could pre
vent a pattern of genetic isolation-by-distance (IBD), which is 
seen in larger scale data for D. magna (Fields et al. 2015), 
across small geographic distances. We further investigate 
the relative strength of natural selection versus genetic drift 
using statistics that estimate the proportion of (non)syn
onymous polymorphisms like πN and πS and (non)adaptive 
substitutions like ωNA and ωA. Because of recurring bottle
necks, Ne should be low, which might weaken the efficiency 
of natural selection and strengthen the effect of genetic drift. 
Under this scenario, we predict a genomic signature of weak 
purifying selection, i.e., an excess of nonsynonymous poly
morphisms (high ratio of πN/πS), and few polymorphisms 
fixed by adaptation (low ωA). By understanding the variation 
in genomic diversity, genomic differentiation, and (non)adap
tive evolution in this metapopulation, we try to unravel the 
general principles of evolution in metapopulations and 
how they evolve differently from large, stable, panmictic po
pulations using empirical and simulated data.

Materials and Methods
Study System
This study uses samples from a natural Daphnia magna 
metapopulation located on the Tvaerminne archipelago 
in southwestern Finland (59°50′ N, 23°15′ E). Daphnia 
magna is a Holarctic-distributed, freshwater planktonic 
crustacean that inhabits small rock pools on the islands 
of this archipelago. The rock pools (mean volume about 
300 l) are depressions in the bare rock of the islands that 
fill with rainwater but also sometimes collect seawater. 
We call them rock pools or ponds to avoid confusing 
them with “pools” from our genomic pool-seq samples. 
The shallow rock pools are mostly frozen solid in winter; 
many dry up during the summer as well. Environmental 
variables including pond geometry, water salinity, humic 
acid content, pH, calcium concentration, distance to the 
sea, and height above sea level are available for all ponds 
(Ebert et al. 2013; Pajunen and Pajunen 2003; Ranta 
1979). Since 1982, these ponds have been surveyed biannu
ally for the presence of D. magna, and since 2007, we have 
assayed D. magna samples from these ponds for parasitic 
infections (D. Ebert, unpublished data). Daphnia magna 
is a cyclic parthenogen; sexual reproduction results in rest
ing eggs that allow it to survive the winter freezes and the 
drying out of ponds during the summer. These resting eggs 
disperse passively by wind, water, or birds and are, there
fore, crucial for the migration and colonization of vacant 
habitat patches. Daphnia magna also reproduces asexually, 
which allows clonal expansion after colonization.

Samples and Sequencing
Our aim was to collect D. magna from all occupied ponds 
(subpopulations) in the core sampling area in late May/early 

June of 2014 (fig. 1 and table 1, supplementary table S1, 
Supplementary Material online) in order to sequence the 
pooled genotypes, called pool-seq. Pool-seq is a powerful 
and cost-efficient way to estimate the genome-wide allele 
frequencies of populations, as it provides allele frequency es
timates of SNPs that are mostly comparable to individual- 
based sequencing at less cost and with less time (Chen 
et al. 2022; Dorant et al. 2019; Gautier et al. 2013; Kurland 
et al. 2019). We collected random subpopulation samples 
by sieving with hand-held plankton nets through the ponds, 
aiming for 50 animals per pond and excluding ponds with 
very small populations at the time of sampling to avoid dis
rupting natural dynamics. In total, we collected 62 subpopu
lation samples from 13 islands (fig. 1 and table 1). Collected 
animals started a 3-day regime of antibiotics within 24 h of 
collection (Fields et al. 2018) and were fed dextran beads 
(Sephadex “Small” by Sigma Aldrich: 50 μm diameter) at a 
concentration of 0.5 g/100 ml to evacuate their gut content 
and reduce nontarget DNA sequencing. Whole animals 
were then stored in RNAlater (Ambion) and kept at minus 
20°C, until we extracted DNA.

For DNA extraction, samples were thawed, the RNAlater 
was removed, and the samples were washed twice with water. 
We added 500 μl extraction buffer (Qiagen GenePure DNA 
Isolation Kit) to the sample tube and ground the sample using 
a plastic pestle. Then, we added 20 μl Proteinase K for over
night incubation at 55°C, after which we added 20 μl 
RNAse for RNA digestion for one hour at 37°C. For protein re
moval and DNA precipitation, we followed the instructions of 
Qiagen GenePure DNA Isolation Kit, with the addition of 2 μl 
glycogen (Sigma-Aldrich) to aid DNA precipitation. We then 
suspended the purified DNA in 80 μl of Qiagen DNA hydra
tion solution and measured DNA concentration using a Qubit 
2.0 (Invitrogen). Libraries were prepared using Kapa PCR-free 
kits and sequenced by the Quantitative Genomics Facility ser
vice platform at the Department of Biosystem Science and 
Engineering (D-BSSE, ETH) Basel, Switzerland, on an Illumina 
HiSeq 2500 sequencer. Two samples failed this sequencing 
step, leaving a total of 60 samples for subsequent analyses 
(G-33 and SK-1; table 1).

Ecological Covariates and Subpopulation age
We summarized ecological covariates (i.e., catchment area, 
depth, distance to the sea, electrical conductivity, height 
above the sea, pH, plant cover, submersion time, and 
surface area) using a principal component analysis (PCA) 
in R v.4.0.3 (R Core Team 2020) (see Dubart et al. (2020)
for more details). Measures of area and length were 
log10-transformed beforehand. The first two axes of the 
PCA explained 43.90% (PC1 25.39% and PC2 18.51%) of 
the variance and were ecologically meaningful. The first 
principal component described the impact of the sea or 
“marineness” (e.g., proximity to the sea, water chemistry 
[salinity, pH level], plant cover [fewer plants closer to 
the sea]), and represented a gradient from marine to ter
restrial ponds. PC2 described geophysical properties inde
pendent of the sea (e.g., pond size, depth, catchment area) and 
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represented a gradient from small to large ponds. The age of 
the subpopulation was assessed using biannual sampling 
data, with the maximum observed age being 31.5 years, as sam
pling started in 1982 (Ebert et al. 2013; Pajunen and Pajunen, 
2003). A subpopulation was considered newly established if an
imals were observed after three consecutive visits without see
ing animals, i.e., animals not being seen for more than a year. 
The chance of a subpopulation remaining undetected for three 
visits in a row was estimated to be below 2%, as the detection 
probability of D. magna is 0.74 in this survey (Dubart et al. 
2020). The subpopulation age was log10(age + 1)-transformed 
for statistical analyses. The geographical distances between 
ponds were calculated using the R package geodist v.0.0.7 
(Padgham and Sumner 2019) and log10-transformed for statis
tical analyses. Infection status with the locally common micro
sporidian parasite Hamiltosporidium tvaerminnensis (Haag 
et al. 2011), another ecological factor that may explain genomic 
diversity in the focal metapopulation (Cabalzar et al. 2019), 
was determined based on field records and on the presence 
of H. tvaerminnensis-specific sequencing reads in our pool-seq 
samples.

Mapping Genomic Reads and Variant Calling
Raw reads were assessed for quality with FastQC v.0.11.8 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) 

and subsequently trimmed to remove low-quality se
quence and adapter contamination using the default set
ting on Trimmomatic v.0.39 (Bolger et al. 2014). The 
second run of FastQC confirmed successful trimming. 
These trimmed, paired-end reads were interleaved with 
seqtk v.1.2 mergepe (https://github.com/lh3/seqtk). The 
D. magna XINB3 individual genome (BioProject ID: 
PRJNA624896; Fields et al., in prep.) was used as the refer
ence genome when mapping interleaved reads with bwa- 
mem2 v.2.2.1 (Vasimuddin et al. 2019). Because this refer
ence genome originates from a genotype collected from 
the same metapopulation, it is closely related to the meta
population samples in our study. SAMtools v.1.7 (Li et al. 
2009) was used to convert SAM files to BAM files, 
coordinate-sort individual BAM files, and remove un
mapped reads. Read groups were added, and duplicates 
were marked for individual BAM files using the Picard 
Toolkit v.2.23.9 (Broad Institute 2020). The average 
read depth was estimated using SAMtools function 
depth. INDELs were realigned with GATK v.3.8 
RealignerTargetCreator (McKenna et al. 2010; Van der 
Auwera et al. 2013), which created target intervals, and 
GATK IndelRealigner. Variants were called using GATK 
UnifiedGenotyper. These analyses were conducted at the 
sciCORE (http://scicore.unibas.ch/) scientific computing 
center at the University of Basel using a snakemake 
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(Mölder et al. 2021) workflow. The VCF file was filtered to 
include high-quality (QUAL > 30, MQ > 40, QD > 2.0, FS < 
60) sites with biallelic SNP variants (i.e., excluding INDEL 
variants) using vcffilter from the C++ library vcflib 
v.1.0.0_rc2 (Garrison et al. 2021) and VCFtools v.0.1.16 
(Danecek et al. 2011). Depth estimates for each sample 
at each site were recalculated based on the allelic depths 
using VcfFilterJdk v.1f97a34 (Lindenbaum and Redon 
2018), as GATK includes uninformative reads in the depth 
estimate but does not include them in the allelic depth es
timates. Afterward, we masked genotypes with a depth of 
coverage (DP) less than ten using VCFtools and BCFtools 
v.1.9 (Danecek et al. 2021), and we masked genotypes 
with allele depth (AD) of the minor allele equal to 1 using 
VcfFilterJdk. By applying this minor allele read count filter 
for each individual sample, we chose a filter that is 
DP-aware, and thus, more conservative than the more 
commonly used minor allele frequency (MAF) filters in 
pool-seq studies to avoid sequencing errors (Gautier 
et al. 2013).

Sequence Variation and Population Genetic Analyses
Overall, synonymous and nonsynonymous genomic diver
sities were estimated as π, πS, and πN, respectively, using 
SNPGenie v.1.0 (Nelson et al. 2015). Because SNPGenie 
makes calculations per contig, we split the reference 
FASTA, annotation, and VCF files into individual contigs 
using PopGenome v.2.7.2 (Pfeifer et al. 2014). We converted 
the split annotation files to GTF format using GffRead 
v.0.12.1 (Pertea and Pertea 2020). We used πS as a proxy 
for effective population size (Leroy et al. 2021) and tested 
for the association between πS and pond volume (a rough 
proxy for population size) and the number of mitochon
drial haplotypes (a rough proxy for the number of foun
ders and immigrants). We estimated pond volume as a 

pyramid based on depth and surface area. We estimated 
the number of mitochondrial haplotypes by reconstruct
ing them from the trimmed sequencing data, starting 
with mapping interleaved reads to the mitochondrial ref
erence sequence (V3.1; Fields et al., in prep.) using bwa- 
mem2. We then used the resulting BAM files as input 
for RegressHaplo v.0.1 (Leviyang et al. 2017) in R to recon
struct haplotypes of all samples individually with default 
parameters. Specifically, we subset BAM files using 
BEDtools v.2.30.0 (Quinlan 2014) to focus on a genetic re
gion (from position 10,800 to 12,800) without long con
served regions to avoid performance issues (Leviyang 
et al. 2017). For these calculations made in R, we used 
the package data.table 1.13.6 (Dowle and Srinivasan 
2020) and log10-transformed estimates of πS, pond volume, 
and the number of mitochondrial haplotypes. We used the 
R package poolfstat v.2.0.0 (Gautier et al. 2022) to estimate 
pairwise genomic differentiation based on the AD in the 
VCF file. We removed sites with missing genotypes, con
verted the pooldata object generated with poolfstat to 
allele frequencies, and then conducted PCA with the pca
dapt v.4.3.3 (Privé et al. 2020) R package and t-SNE using 
Rtsne v.0.15 (Krijthe 2015) R package with 5D retained 
from the initial PCA step, perplexity 19, and 5,000 itera
tions. For generating the input for GESTE v.2 (Foll and 
Gaggiotti 2006), which is a Bayesian method based on 
the F-model to estimate FST of subpopulations and to re
late FST to environmental factors using a generalized linear 
model, we used poolfstat’s function pooldata2genobay
pass() to convert the VCF file to allele read counts. After 
conversion, we corrected the corresponding haploid pool 
sizes as described in Feder et al. (2012) using a modified 
version of the script baypass2bayescan.py (Stern and Lee 
2020).

Associations Between Covariates, Genomic Diversity, 
and Genomic Differentiation
To find associations between genomic diversity and eco
logical covariates (i.e., subpopulation age, PC1, PC2, 
mean distance to the two nearest neighbors (NN2), H. 
tvaerminnensis infection status), we performed a multiple 
regression analysis using a type two ANOVA from the car 
v.3.0–10 (Fox and Sanford 2019) R package. Using the com
mon and simple measures for the isolation of NN2 led to 
the same result as using other measures of isolation (such 
as NN1 to NN7; supplementary fig. S1, Supplementary 
Material online). Additionally, after observing island- 
specific clusters in the dimensionality-reduction analysis 
of our genomic data, we also included the island of origin 
as a factor in a second model. We ran the Bayesian GESTE 
methodology with the same covariates and separately 
checked for associations between pairwise genomic differ
entiation and each ecological covariate (i.e., geographic 
distance, mean subpopulation age, mean PC1, mean PC2, 
and mean NN2) using distance-based Moran’s eigenvector 
maps (dbMEM) analysis by redundancy analysis (RDA) to 
test for IBD, isolation-by-environment, or age-specific 

Table 1. Island Information.

Island Island Latitude/Longitude N

Nameless skerry south of 
Fyrgrundet

FS 59.8286/23.2485 5

Nameless skerry more south of 
Fyrgrundet

FSS 59.8283/23.2476 1

Granbusken G 59.8152/23.2467 7(−1)
Flatgrund K 59.8238/23.2527 9
Lasarettet LA 59.8273/23.2461 4
Nameless skerry LG 59.8180/23.2470 2
Nameless skerry LON 59.8200/23.2506 5
Melanskar M 59.8215/23.2470 2
Storgrundet N 59.8221/23.2593 16
Skallotholmen SK 59.8319/23.2572 6(−1)
Nameless skerry north of 

Skallotholmen
SKN 59.8332/23.2587 2

Nameless skerry east of 
Skallotholmen

SKO 59.8330/23.2584 2

Nameless skerry west of 
Skallotholmen

SKW 59.8329/23.2563 1

Latitude and longitude data are obtained from Google maps. N , Number of 
sampled ponds (subpopulations); the two samples where the sequencing failed 
are shown as “−1”.
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genomic differentiation. RDAs were performed on the 
overall data and separately on data from each island. 
Specifically, we separately transformed each explanatory 
variable into dbMEMs using the R package adespatial 
v.0.3–14 (Dray et al. 2021) and decomposed the response 
variable, pairwise FST, into principal components using the 
R base stats function prcomp(). The RDAs were done in R 
using the package vegan v.2.5–7 (Oksanen et al. 2020), with 
significance assessed by 1,000 permutations. Finally, we 
tested for a correlation between genomic diversity and 
the ecological variables underlying the PCA for habitat.

Daphnia Sinensis Genome Annotation
To estimate (non)synonymous divergence and the rate of 
(non)adaptive nonsynonymous substitutions, we down
loaded the available D. sinensis genome (ASM1316709v1; 
GenBank accession: GCA_013167095.1) from NCBI and 
RNA-seq reads (run accessions: SRR10389290, 
SRR10389293, and SRR10389294) from EMBL. Daphnia si
nensis is closely related to D. magna (Cornetti et al. 2019). 
We removed adapters from the reads using fastp v.0.20.0 
(Chen et al. 2018) and checked its success with FastQC. 
To annotate the genome, we used MAKER2 v.2.31.10 
(Holt and Yandell 2011). Specifically, we created a data
base from the D. sinensis genome and individually aligned 
the trimmed RNA-seq reads to it using STAR v.2.7.4a 
(Dobin et al. 2013). The database was used to generate 
reference-assisted transcriptomes with Trinity v.2.12.0 
(Grabherr et al. 2011). We checked biological complete
ness using BUSCO v.3.0.2 (Seppey et al. 2019) and the ar
thropoda_odb9 gene set (creation date: February 7, 
2017). Whereas we obtained target proteins by applying 
TransDecoder v.5.5.0 (https://github.com/TransDecoder/ 
TransDecoder) on the transcriptomes, we used diamond 
v.2.0.11.149 (Buchfink et al. 2021) as well as hmmer 
v.3.3.2 (hmmer.org) to find matches of the ORFs to swis
sprot and pfam. Pyfasta v.0.5.2 (https://github.com/ 
brentp/pyfasta/) was used to split intermediate FASTA 
file outputs. To obtain transcript hints, the individual tran
script files were concatenated and mapped using mini
map2 v.2.22-r1105 (Li 2018) before collapsing isoforms 
using collapse_isoforms_by_sam.py from the Cupcake 
tool (https://github.com/Magdoll/cDNA_Cupcake).

Summary Statistics of the Divergence Data
We repeated the methodology for read mapping and VCF 
file preparation using the D. sinensis genome as a reference. 
The rate of adaptive substitution, α, was calculated for 
each sample separately based on the total counts of 
(non)synonymous polymorphisms, Pn and Ps, and substi
tutions, Dn and Ds, as 1—(Ds*Pn)/(Dn*Ps) (Smith and 
Eyre-Walker 2002) using SNPGenie. Only substitutions 
without a polymorphism at the same site were counted. 
To calculate the rate of (non)adaptive nonsynonymous 
substitutions, ωNA and ωA, we estimated the number of 
(non)synonymous substitutions per site, dN and dS, using 
SNPGenie. Afterward, we calculated ωA as α(dN/dS) and 

ωNA as (1-α)(dN/dS). We tested whether ωA and ωNA 

were correlated with Ne using Spearman correlations. Ne 

was approximated with genomic diversity at synonymous 
sites, πS, using SNPGenie.

Empirical Data of Single, Large, Stable Population
To compare our focal metapopulation with a single, larger, 
more stable D. magna population, we estimated overall 
genomic diversity, π, genomic diversity at (non)synonym
ous positions, πN, and πS, (non)synonymous divergence, dN 

and dS, and the rate of (non)adaptive nonsynonymous 
substitutions, ωNA and ωA, for the D. magna population 
from the large Aegelsee lake near Frauenfeld, Switzerland 
(47°33′28.0″ N, 8°51′46.0″ E; surface area around 
30,000 m2). This population is at least 60 years old and 
has an estimated minimum population size of over 10 mil
lion individuals. The Aegelsee does not entirely freeze in 
winter nor dry up in summer. However, fall and winter 
conditions result in little to no overwintering of D. magna 
(Ameline et al. 2021). In spring, D. magna hatch from rest
ing eggs (Ameline et al. 2022). We collected a sample of 
102 individuals in the spring of 2017, pool-sequenced, 
and prepared them for analysis identically to the metapo
pulation samples. To calculate the genomic summary sta
tistics, we used SNPGenie with two separate reference 
genomes, i.e., D. magna and D. sinensis.

Simulations
To further investigate relationships between (non)syn
onymous genomic diversity and effective population size 
in this metapopulation, we simulated different-sized popu
lations and compared their variation in (non)synonymous 
genomic diversity with estimates from our collected nat
ural subpopulations. Using a nonWright–Fisher model in 
SLiM v.3.6.0 (Haller and Messer 2019), we simulated a 
100 kilobase pair stretch of coding DNA in panmictic po
pulations of sizes 100, 200, 300, 400, and 500 with default 
recombination rate of 1 × 10−8 and a mutation rate of 1 × 
10−8, which has previously been estimated from D. magna 
clones collected in or near the focal metapopulation (Ho 
et al. 2020). We simulated asexually reproducing indivi
duals with sexual reproduction—only every eighth gener
ation, as we estimate to be the case during the summer 
season (May to September)—at the study site. We ran 
the simulations until populations reached mutation-drift 
equilibrium, which is approximately ten times as many 
generations as the size of the population (Haller and 
Messer 2019). We made simulations with different distri
butions of the selection coefficient, i.e., distribution of fit
ness effects (DFE), for nonsynonymous mutations for each 
population size. The DFE was either fixed at zero or drawn 
from a gamma distribution (mean = −0.03 and shape = 0.2 
or mean = −0.05 and shape = 0.5). However, we fixed the 
selection coefficient of synonymous mutations at zero 
for all runs. We conducted 1,000 replicate simulations 
for each setting. To be able to compare the results of 
our simulations with more conventional sexual systems, 
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we repeated the same simulations but with solely sexually 
reproducing individuals.

To compare the observed (non)synonymous substitu
tion rates in the metapopulation to in silico data, we per
formed a second set of simulations with substitution 
tracking enabled. We increased the number of generations 
per simulation to 100,000 and the simulated sequence 
length to one Mbp to get a significant number of poly
morphisms that would reach fixation. Moreover, 1.5% of 
the nonsynonymous mutations were beneficial (s = 
0.0001), as reported for Drosophila (Huber et al. 2017), 
making the calculation of ωA and ωNA more meaningful.

Results
Sequencing and Population Structure
A total of 60 D. magna subpopulations distributed 
throughout almost the entire survey area of the metapopu
lation were successfully sequenced (fig. 1 and table 1). 
Between 72% and 99% of our pool-seq reads were mapped 
to the D. magna reference genome (supplementary table 
S1, Supplementary Material online). Samples with a low 
mapping percentage were infected with a locally common 
microsporidian parasite (Hamiltosporidium tvaerminnen
sis; supplementary table S1, Supplementary Material on
line) that can dominate the sequencing reads when 
whole genomes of host and parasites are cosequenced 
(Angst et al. 2022). With only a few exceptions, the average 
read coverage for most D. magna samples was beyond 20× 
(supplementary table S1, Supplementary Material online). 
After variant filtration, we were left with 1,540,716 SNPs 
to analyze. A PCA of this SNP data indicated an overall 
structure in the data (fig. 2A). As expected, most samples 
originating from the same island clustered together. The 
PCs reflected geographic distribution to some degree, 

with longitude being positively correlated with PC1 
(Spearman’s r(58) = 0.71, P < 0.001) and latitude negatively 
correlated with PC3 (Spearman’s r(58) = −0.50, P < 0.001). 
The clustering by island became more defined when sam
ples were pinpointed on a 2D map based on the first five 
PCs using t-distributed stochastic neighbor embedding 
(t-SNE; fig. 2B). Interestingly, in some cases, samples from 
some islands fell into multiple subclusters (LA, M, and N), 
reflecting distinct regions on the islands (supplementary 
fig. S2, Supplementary Material online). These subclusters 
may represent different colonization histories for these re
gions. Furthermore, samples from island SK and its close 
neighboring islands, SKN, SKO, and SKW, formed one clus
ter, so did samples from three geographically close islands 
FS, FSS, and LA (fig. 2B).

(Non)Adaptive Genomic Divergence
Synonymous genomic diversity, πS, can be used to approxi
mate the theoretical quantity Ne, acting as a stand-in to 
predict how populations will behave evolutionarily. This 
is because πS is determined by mutation rate and Ne. 
Since the mutation rate is similar across subpopulations, 
the observed differences in their πS are largely due to their 
variation in Ne. The smaller the Ne, the stronger the genetic 
drift, and thus, the faster the loss of mutations (Wright 
1931). We tested this approximation by correlating πS 

with pond volume (assuming larger ponds have larger po
pulations and are more likely to receive immigrants) and 
with the number of mitochondrial haplotypes (assuming 
the number of haplotypes is representative of the number 
of colonists and immigrants). While both variables showed 
a positive association, as expected, it was not a strong cor
relation: the correlation of πS with pond volume was 
Pearson’s r(58) = 0.25, P = 0.05, whereas the correlation 
of πS with mitochondrial haplotypes was F(1,58) = 4.502, 

A B

FIG. 2. Dimensionality-reduction using PCA and t-SNE. PCA (A) and t-SNE (B) reveal spatial population structure based on whole-genome allele 
frequency data. Samples from the same island usually form clusters. Colored symbols represent the island of origin (see legend). Percentages in 
(A) give the amount of variance explained by PC1 and PC2.

Genetic Drift Shapes Dynamic Metapopulation · https://doi.org/10.1093/molbev/msac264 MBE

7

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac264/6874788 by H

elsinki U
niversity Library user on 26 January 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
https://doi.org/10.1093/molbev/msac264


P = 0.038, and R2 = 0.07. The weak correlations are not en
tirely unexpected because the degree to which Ne corre
lates with population census size, N, is highly variable 
and depends on a range of ecological and evolutionary de
tails in an individual biological system (Waples 2022). For 
example, in this metapopulation, large subpopulations 
can be founded by one or several individuals that have 
undergone clonal expansion. Observed nonsynonymous 
and synonymous genomic diversity, πN and πS, were 
strongly positively correlated, but with a slope of less 
than one (fig. 3A, supplementary fig. S3, Supplementary 
Material online). More diverse subpopulations showed lar
ger departures from a one-to-one ratio, meaning that πN 

decreased relative to πS as the diversity of subpopulations 
increased (fig. 3A, supplementary fig. S3, Supplementary 
Material online). We found the same relationship between 
nonsynonymous and synonymous diversity when we drew 
nonsynonymous mutations from a distribution of negative 
selection coefficients to simulate partially asexual (fig 3B) 
and sexual (supplementary fig. S4, Supplementary 
Material online) populations of different sizes. When the 
selection coefficient of all mutations is zero, the slope is 
one (fig. 3B). Therefore, observed and simulated results co
incided with expectations from population genetic theory, 
that purifying selection is more efficient in removing dele
terious nonsynonymous polymorphisms from populations 
with higher synonymous diversity (populations with high
er Ne) (Charlesworth 2009). Furthermore, the ratio of non
synonymous to synonymous genomic diversity in the 
subpopulations, πN/πS, was positively correlated with the 
isolation measure (mean distance to the two closest neigh
boring subpopulations, or NN2) (Spearman’s r(58) = 0.36, 

P = 0.005; fig. 5), suggesting that purifying selection is 
less efficient in more isolated (= less diverse) subpopula
tions. Positive selection, measured as the rate of adaptive 
nonsynonymous substitutions, ωA, was higher in popula
tions with higher synonymous diversity, a pattern also 
seen in the data from the metapopulation estimated 
with the outgroup D. sinensis (fig. 4A, supplementary re
sults, Supplementary Material online) and in the simula
tion results (fig. 4B). This supports that higher 
synonymous diversity is an approximation for higher ef
fective population size allowing for more efficient selec
tion. Because natural selection and genetic drift are 
nonindependent, positive selection may be more efficient, 
as it is less affected by genetic drift. (The rate of nonadap
tive nonsynonymous substitutions, ωNA, is an inversion of 
ωA and was lower in larger populations [supplementary 
figs. S5 and S6, Supplementary Material online]).

Genomic Diversity in Relation to Ecology
Genomic diversity, π, was estimated separately for each D. 
magna subpopulation. It ranged by nearly an order of mag
nitude from 3 × 10−4 to 1 × 10−3 with a mean of 6 × 10−4. 
We tested whether genomic diversity was associated with 
subpopulation age since colonization, NN2, ecological vari
ables, and infection status. Using multiple regression ana
lysis, we found that young, isolated subpopulations were 
less diverse than older, less isolated subpopulations (table 
2 and fig. 6, supplementary fig. S7, Supplementary Material
online). These findings held true after correcting for the is
land of origin (supplementary table S2, Supplementary 
Material online). We found no significant association 

A B

FIG. 3. Association between nonsynonymous, πN, and synonymous, πS, genomic diversity in populations of different sizes. (A) πN plotted against 
πS, with each dot representing one (sub)population. The slope of the data cloud is smaller than one (0.52). Thus, more diverse subpopulations 
have relatively fewer nonsynonymous polymorphisms, suggesting that purifying selection is stronger in these subpopulations. The single dot to 
the right is the estimate for the single, large, and stable population from Switzerland. (B) Simulated (non)synonymous genomic diversity using 
SLiM (Haller and Messer 2019). The colored numbers show the simulated population sizes. πS correlates well with Ne. Colors indicate the non
synonymous distribution of fitness effects (DFE) following different gamma distributions or fixed to zero (total absence of selection; s = 0). The 
DFE following a gamma distribution with a mean of −0.05 and a shape of 0.5 is the scenario with  the strongest selection. Error bars indicate the 
standard error around the mean of 1,000 runs. Colored lines are fits for the different nonsynonymous DFEs using linear regressions. The diagonal 
line indicates the one-to-one ratio in both plots.
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between π and either PC1 (marineness), PC2 (pond geom
etry), or H. tvaerminnensis infection status in the overall 
model (table 2). However, we found a slight correlation be
tween genomic diversity and mean pH (Pearson’s r(58) = 
0.30, P = 0.02), when testing the ecological variables under
lying the habitat PCA separately. This became nonsignifi
cant when correcting for multiple testing, which was 

necessary because several ecological variables underlying 
the habitat PCA were tested.

Genomic Differentiation in Relation to Ecology
Genomic differentiation between subpopulations, as esti
mated with F-model-based FST using GESTE, had a mean 
of 0.06 and a range from 0.02 to 0.21. GESTE’s test for as
sociation with subpopulation age, environment, and isola
tion suggested that genomic differentiation was best 
explained by a model with only the measure of isolation, 
NN2, i.e., the model with the highest posterior probability 
(postProb = 0.48; table 3 and fig. 7A, supplementary fig. S8, 
Supplementary Material online). Models without this iso
lation measure had a posterior probability of essentially 
zero, rendering them unlikely. The relationship between 
FST and NN2 remained significant when we corrected for 
the island of origin and infection status (F(1,45) = 67.961, 
P < 0.001, and R2 = 0.75). Furthermore, as estimated using 
poolfstat, pairwise genomic differentiation correlated with 
mean NN2 (dbMEM analysis by RDA: R2 = 0.05, P = 0.013; 
supplementary fig. S9, Supplementary Material online) but 
the explained variation is low. Therefore, both the F-model 
and the pairwise approach for estimating genomic differ
entiation found that geographically isolated subpopula
tions showed greater differentiation than less isolated 
subpopulations, and that the geographical isolation of sub
populations was the primary driver among the factors 
tested for overall patterns of genomic differentiation in 
the focal metapopulation. Additionally, pairwise genomic 
differentiation and geographic distance were positively 
correlated (R2 = 0.39, P = 0.001; fig. 7B), meaning that sub
populations separated by greater geographical distance 
were more differentiated than geographically closer sub
populations, i.e., IBD. We also found IBD when looking 
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FIG. 5. πN/πS depends on the degree of spatial isolation of a subpo
pulation. The number of nonsynonymous polymorphisms relative to 
synonymous polymorphisms correlates positively with the isolation 
measure, NN2 [m]. A positive correlation was found using a 
Spearman correlation test (R = 0.36, P = 0.005). Each dot represents 
one subpopulation. The regression line is from a linear model with 
the 95% confidence interval depicted as shading around the line 
to visualize the positive correlation.
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FIG. 4. Association between the proportion of adaptive nonsynonymous substitutions, ωA, and synonymous genomic diversity, πS, in differently 
sized populations. (A) Observed ωA for each subpopulation; ωA is positively associated with πS, which is a useful approximation for Ne. The single 
dot at the top right shows the estimate for the single, large, and stable population from Switzerland. (B) Shows the positive association of ωA 
with πS and the simulated population size. Horizontal and vertical error bars indicate the standard error around the mean of 1,000 runs (simula
tions were performed with SLiM (Haller and Messer 2019)).

Genetic Drift Shapes Dynamic Metapopulation · https://doi.org/10.1093/molbev/msac264 MBE

9

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac264/6874788 by H

elsinki U
niversity Library user on 26 January 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac264#supplementary-data
https://doi.org/10.1093/molbev/msac264


specifically at combinations of subpopulations within is
lands (mean R2 = 0.38). Correlations between pairwise 
genomic differentiation and the remaining candidate vari
ables (mean of each PC1 (marineness), PC2 (pond geom
etry), and subpopulation age) were nonsignificant. This 
pattern corresponds with results from the GESTE, pointing 
to IBD as the dominant pattern. On the other hand, the 
immediate effect of genetic bottlenecks during population 
founding on higher population differentiation among 
young subpopulations is not as strong in the overall ana
lysis. However, the finding by Haag et al. (2005) that newly 
founded subpopulations are more differentiated from 
each other than older subpopulations was confirmed 
when looking specifically at comparisons between the 
age class of newly founded subpopulations and older age 

classes (≤2 years old: mean FST = 0.49, CI95 = 0.47–0.51; 
>2 and ≤15 years old: mean FST = 0.35, CI95 = 0.33–0.37; 
>15 years old: mean FST = 0.36, CI95 = 0.35–0.38; 
Wilcoxon’s W = 21,774, P < 0.001 and W = 22,103, P < 
0.001 for old and intermediate age classes vs. young age 
class, respectively). The finding that intermediate and old 
age classes did not differ in mean pairwise FST 

(Wilcoxon’s W = 28,697, P = 0.16) reflects the nonsignifi
cant correlation between pairwise population differenti
ation and mean age and agrees with Haag et al. (2005).

Single, Large, Stable Population
To compare our focal metapopulation’s genetic summary 
statistics with a single large population of the same species, 
we used pool-seq data from the relatively large Aegelsee D. 
magna population in Switzerland. Based on the analysis of 
1,056,626 SNPs, we estimated a π value of 1.5 × 10−3, about 
2.5 times higher than that estimated for the entire meta
population. The estimates of πN (1.0 × 10−3) and πS (2.0 
× 10−3) corresponded with our expectations for a larger 
population, as they showed higher πS and more deviation 
from the one-to-one line than the metapopulation samples 
(fig. 3A). Also, ωA (−0.18) and ωNA (0.32) were higher and 
lower than in the metapopulation samples, respectively, as 
expected for a larger population (fig. 4, supplementary fig. 
S5, Supplementary Material online).

Discussion
Extinction–(re)colonization dynamics are a key aspect in 
distinguishing dynamic metapopulations from larger, 
more stable populations with gene flow (Hanski 1999; 
Wang and Altermatt 2019). Understanding how these 

Table 2. Type two Analysis of Variance Between Genomic Diversity, π, 
and Explanatory Variables.

Explanatory Variable df Statistics P R2

Population age 54 t= 2.02 0.048 0.308
PC1 (marineness) 54 t= 1.13 0.265
PC2 (pond geometry) 54 t= −0.52 0.605
NN2 (isolation) 54 t= −3.152 0.003
Infection status 1/54 F= 0.5202 0.474

This type of analysis of variance follows the principle of marginality, testing each 
term after all others (partial sum of squares model). One R2 value is given for the 
complete model. Significant associations are in bold.
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FIG. 6. Genomic diversity, π, can be statistically explained by subpo
pulation age (x-axis) and isolation level (NN2, larger size of symbol 
for more isolated populations) (compare table 2). Genomic diversity 
within subpopulations is positively correlated with subpopulation 
age (positive slope of regression line) and negatively correlated 
with the isolation measure, NN2 [m] (symbol sizes become smaller 
towards the top of the graph). Population age is log10(age + 
1)-transformed. Each dot represents a subpopulation. The regression 
line is based on a linear model (π ∼ log10(age + 1)) with the confi
dence interval depicted as shading around the line.

Table 3. Associations Between Differentiation in Subpopulations, FST, 
and Explanatory Variables Calculated Using GESTE.

Explanatory Variable(s) postProb(model)

Constant 0.000
Constant, age 0.000
Constant, PC1 0.000
Constant, PC1, age 0.000
Constant, PC2 0.000
Constant, PC2, age 0.000
Constant, PC2, PC1 0.000
Constant, PC2, PC1, age 0.000
Constant, NN2 0.478
Constant, NN2, age 0.012
Constant, NN2, PC1 0.027
Constant, NN2, PC1, age 0.002
Constant, NN2, PC2 0.374
Constant, NN2, PC2, age 0.001
Constant, NN2, PC2, PC1 0.094
Constant, NN2, PC2, PC1, age 0.003

GESTE is a Bayesian method based on the F-model for estimating the FST of sub
populations and for testing associations between FST and explanatory variables. 
Here, age, PC1, PC2, and NN2 are explanatory variables. Each combination of ex
planatory variables in the first column is accompanied by a posterior probability in 
the second column. Unrounded posterior probabilities sum to one. Models with
out NN2 result in a posterior probability of 0.
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metapopulation dynamics influence molecular evolution is 
a step toward understanding how metapopulations differ 
from the more extensively studied Wright–Fisher popula
tions. This study presents evidence that nondeterministic 

processes play a large role in a highly dynamic, natural me
tapopulation, and that subpopulation founding with initial 
genetic bottlenecks leads to low genomic diversity as as
sumed under the propagule model. This model predicts 
strong genetic drift, a weakened efficacy of selection, 
and the accumulation of deleterious mutations, all of 
which we observed here, in the studied metapopulation. 
Contrasting this metapopulation with a stable, large popu
lation of the same species shows that genomic diversity is 
considerably lower and genetic drift is much stronger in 
the metapopulation.

Evolutionary Model
By identifying the genomic variation, age, ecology, and 
geography of individual subpopulations, we investigated 
the evolution of interconnected subpopulations of a meta
population. Previous research in our focal D. magna meta
population has found high turnover dynamics, small 
numbers of subpopulation founders, and the accumula
tion of deleterious mutations in the mitochondrial gen
ome, all consistent with the propagule model (Altermatt 
and Ebert 2010; Dubart et al. 2020; Ebert et al. 2013; 
Fields et al. 2018; Zumbrunn 2011). Subpopulations tend 
to be short-lived, undergoing frequent and strong genetic 
bottlenecks during the colonization of empty habitat 
patches and subsequently suffering from a genetic load. 
The effective population size of subpopulations is corres
pondingly low (Walser and Haag 2012), and genetic drift 
is a strong evolutionary force that can reduce natural 
selection efficacy. Our study corroborated these features, 
demonstrating low genomic diversity and high differenti
ation among subpopulations, particularly young ones. 
For most genomic summary statistics, isolation from 
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FIG. 7. Isolation by distance (IBD). (A) F-model-based FST positively correlates with the isolation measure NN2 [m]. Each point represents one 
subpopulation. A positive correlation was found using a Spearman correlation test (see statistics within the graph). (B) Pairwise population dif
ferentiation correlates positively with geographic distance. Each point represents the comparison between two subpopulations. A positive cor
relation was found using dbMEM analysis by RDA (see statistics within the graph). In both plots, the blue line is a regression line based on a linear 
model with the confidence interval depicted as shading around the line to visualize the positive correlation.

FIG. 8. Association between nonsynonymous and synonymous gen
omic diversity in different systems and populations of different sizes. 
Our data presented in fig. 3A are compared with other published 
whole-genomic datasets: Passerine birds originating from island 
and mainland populations (Leroy et al. 2021) and different 
Bromeliaceae species (Yardeni et al. 2022). The relationship between 
πN and πS is the same in all systems. In passerine birds, small popula
tions (on islands) are less diverse than large populations (on main
land) which we also observed in the D. magna system.
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neighboring subpopulations was the most important fac
tor driving variation, suggesting that, especially in remote 
parts of the metapopulation, there is moderate to low 
gene flow among subpopulations. In more isolated subpo
pulations, we found lower synonymous genomic diversity, 
πS, —a proxy for Ne—(fig. 5), and in subpopulations with 
lower πS, we found higher rates of nonadaptive nonsynon
ymous substitutions, i.e., deleterious substitutions 
(supplementary fig. S5, Supplementary Material online). 
Our evolutionary model of the D. magna metapopulation 
contrasts markedly with a much larger and older population 
of the same species, which was considerably more diverse 
and showed more efficient purifying selection, likely due 
to a weaker genetic drift. These results confirm the theory 
of lower adaptive evolution in metapopulations (Whitlock 
2004).

Accumulation of Deleterious Mutations
It has been shown that Ne explains cross-species variation 
in the rate of molecular evolution (Eyre-Walker 2006; 
Eyre-Walker and Keightley 2009; Gossmann et al. 2012). 
The within-species analog of this prediction is that in po
pulations of different sizes, as they are commonly found in 
metapopulations, differences in genomic diversity are ex
pected to explain variation in the rate of molecular evolu
tion among (sub)populations. Populations with lower Ne 

are expected to accumulate deleterious mutations faster, 
thus displaying higher ωNA. Consequently, their rate of 
adaptive substitution, α, would be lower, as shown across 
species by Galtier (2016). In our focal metapopulation, we 
found higher ωNA in subpopulations with smaller πS (a 
proxy for lower Ne; supplementary fig. S5, Supplementary 
Material online). Consequently, ωA in subpopulations 
with smaller πS was decreased, indicating that selection 
is less efficient in these subpopulations and that genetic 
drift may reduce the efficiency of selection. Plotting πN 

against πS shows a strong correlation, but with a slope 
clearly smaller than one (fig. 3). Thus, in subpopulations 
with lower πS, nonsynonymous diversity is higher relative 
to synonymous diversity than in subpopulations with 
higher πS (fig. 3). This relationship might be because (1) 
purifying selection removes nonsynonymous deleterious 
mutations more efficiently in larger subpopulations, and 
(2) gene flow masks genetic load so that subpopulations 
with a lower πN/πS ratio are less isolated (fig. 5). In the 
second scenario, recessive deleterious mutations could 
accumulate after a colonization bottleneck. Gene flow in
creases heterozygosity by introducing variation from less- 
related individuals, which would result in hybrid offspring 
with increased fitness, i.e., hybrid vigor (Ebert et al. 2002; 
Lohr and Haag 2015).

We contrast our findings with previous studies using 
whole-genome data to explore the relationship between 
πN and πS, mainly between species. Leroy et al. (2021)
showed the effect of Ne on (non)synonymous diversity 
and (non)adaptive evolution in insular versus continental
ly distributed populations of different bird species (fig. 8). 

Their comparison also included an insular and a continen
tal sample from the same bird species (Fringilla coelebs). Ne 

was positively associated with ωA. We undertook a similar 
approach within a metapopulation of a single species with 
subpopulations of different ages and isolation levels and 
found the same relationship between πN and πS as well 
as πS and ωA. This suggests that πS explains variation in 
evolution within a species just as it does across species, 
as previous studies have noted (Eyre-Walker 2006; 
Eyre-Walker and Keightley 2009; Gossmann et al. 2012). 
By simulating different-sized populations in silico to isolate 
the effects of Ne on ωA, we further supported this finding, 
thereby obtaining the same associations between πS, πN/ 
πS, and ω as we showed in the natural populations. Our re
sults are also consistent with results by Fields et al. (2018), 
who showed that in genotypes collected from different D. 
magna metapopulations, protein-coding genes in the 
mitochondrial genome show enrichment in deleterious 
mutations compared with genotypes collected from larger 
and more stable populations in other parts of the species’ 
range, and with results by Lohr and Haag (2015), who 
showed that genetic load is higher in D. magna metapopu
lations than in larger and more stable populations. We ob
served negative ωA, the cause for which, generally, is the 
presence of (weakly)deleterious nonsynonymous variants, 
a pattern we describe in the present work. This same pat
tern has been described for D. magna in Fields et al. (2022).

A striking finding of the comparison of our results with 
previously published estimates for the relationship be
tween πN and πS, is that in all studies the datapoints fall 
very close to a nearly straight line. Testing this relationship 
for just one contig of the genome revealed a large amount 
of variation around this line (supplementary fig. S9, 
Supplementary Material online), suggesting that the large 
number of polymorphisms available in whole-genome 
studies is responsible for the good fit of the data to a 
line. The reason for the elevated values of nonsynonymous 
diversity in D. magna (sub)populations relative to the 
other species is unclear. It might be due to the partial asex
ual reproduction, although we did not observe large differ
ences in our simulations (see fig. 3B, supplementary fig. S4, 
Supplementary Material online), or other specifics of their 
demography.

Age and Isolation as Predictors for Genomic Diversity
The founding of subpopulations by one or several indivi
duals and the following rapid subpopulation expansion 
(clonal expansion in the case of cyclic parthenogens like 
Daphnia) leads to an elevation in genetic load (Haag 
et al. 2005) and low genomic diversity. Over time, immigra
tion into subpopulations will increase genomic diversity. If 
subpopulations have a high genetic load, the rate of effect
ive gene flow may be elevated by hybrid vigor, as has been 
shown experimentally for the D. magna metapopulation 
(Ebert et al. 2002). In our focal metapopulation, we con
firmed that genomic diversity increases with subpopula
tion age. We tested if this gain in genomic diversity is 
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faster with a higher immigration rate, by quantifying the 
correlation between the mean distance to the two closest 
neighboring subpopulations (NN2). As expected, isolated 
subpopulations have indeed lower genomic diversity 
than less isolated ones. Without further immigration, gen
omic diversity may even decrease rather than increase, as 
diversity may be lost by drift. There were, however, not suf
ficient isolated subpopulations that were old enough to 
test this assumption.

Earlier studies speculated that larger, more stable ponds 
with older subpopulations could be a reservoir for genom
ic diversity (Haag et al. 2005; Pajunen 1986; Vanoverbeke 
et al. 2007); however, our analysis of the relationship be
tween genomic diversity and the ecological characteristics 
of ponds does not support this prediction. Larger ponds do 
not differ from other ponds in their genomic diversity. We 
also tested a finding from previous research in this metapo
pulation that infection with a virulent microsporidian para
site, which occurs in more than half of all subpopulations, 
is associated with genomic diversity (Cabalzar et al. 2019). 
In our study, we do not observe this correlation. However, 
this earlier study focused exclusively on old subpopulations 
and aimed to understand the evolutionary differentiation 
of old subpopulations evolving with and without the parasite. 
Here, the inclusion of younger subpopulations may have pre
vented us from observing this correlation.

Genomic Differentiation is Driven by Geographical 
Isolation
Genomic differentiation between subpopulations is gener
ally high, mainly because of the high turnover dynamics in 
this metapopulation. These dynamics lead to frequent (re) 
colonization of vacant habitat patches, whereby the ex
pectation of FST between newly founded populations is 
0.5 (Wade and McCauley 1988). We estimated population 
differentiation between recently founded subpopulations 
at ∼0.49, close to the theoretical expectation. However, 
as populations get older and receive immigrants, pairwise 
FST values were expected to decrease, which is what we ob
served. For passively dispersed aquatic invertebrates, foun
der effects have been suggested as a main driver of 
differentiation; these include a combination of a few popu
lation founders, high population growth rates, and large 
population census sizes (Montero-Pau et al. 2018). 
Founder effects occur because many aquatic invertebrates 
are cyclic parthenogens, so a single individual can found 
and, after clonal expansion, populate the entire habitat 
patch. Montero-Pau et al. (2018) have shown that, in pas
sively dispersed aquatic invertebrates, founder effects out
weigh selective processes and migration. These factors 
were all considered equally important in the so-called 
monopolization hypothesis for explaining the genetic 
structure of aquatic invertebrates (De Meester et al. 
2002). Under the monopolization hypothesis, selective 
processes (e.g., adaptation) might be more efficient in po
pulations with large Ne that exhibit weaker genetic drift, so 
that selection can hinder the immigration of deleterious 

alleles and residential allele frequencies are favored (Lohr 
and Haag 2015). In populations with large Ne, local adapta
tion, which is often observed in strongly structured aquatic 
populations (Decaestecker et al. 2007; Franch-Gras et al. 
2017) may, therefore, reduce the effective immigration 
rate of nonadapted genotypes. In the small subpopulations 
of our metapopulation, local adaptation has not been ob
served so far (Cabalzar et al. 2019; Roulin et al. 2015).

Our analysis revealed that subpopulations separated by 
greater distance are more dissimilar than geographically 
closer ones, i.e., a pattern of IBD, suggesting that gene 
flow is more likely between geographically closer subpopu
lations from the same and different islands. Data consist
ent with this have been reported before for the same 
metapopulation (Haag et al. 2006; Roulin et al. 2016). It 
is also consistent with the finding that dispersal distance 
exponentially decays, in which case, long distance colon
ization events are rare (Dubart et al. 2020; Pajunen 1986; 
Pajunen and Pajunen 2003). Alternative to this gene-flow 
hypothesis to explain IBD, it has been suggested for several 
aquatic organisms that sequential colonization can shape 
IBD (Montero-Pau et al. 2018). However, our long-term 
data on local extinction and recolonization in this metapo
pulation suggest that the gene flow hypothesis might ex
plain more of the observed pattern of IBD (Dubart et al. 
2020; Pajunen 1986; Pajunen and Pajunen 2003). 
Furthermore, the isolation measure, NN2, was the variable 
that best explained a subpopulation’s FST estimated with 
the F-model approach and could be shown to correlate 
with pairwise FST (fig. 7). Finding an association between 
NN2 and FST in these two complementary approaches un
derlines the importance of gene flow in predicting genom
ic differentiation in this metapopulation (Gaggiotti and 
Foll 2010). In contrast to our study system, previous meta
population studies of freshwater zooplankton presented 
evidence against IBD on a local scale (Martin et al. 2021; 
Montero-Pau et al. 2017), but system-specific differences 
may be important. Our study species, D. magna, is mainly 
a pond-dwelling species. Other zooplankton species may 
inhabit different waterbodies, such as large lakes, and dif
ferent ecological factors may drive their evolution. 
Population genomic studies in other species are needed 
for proper comparisons.

Conclusion
We studied the population genomics of a well- 
documented, highly dynamic metapopulation to under
stand if metapopulations evolve differently from a large 
and stable population. The obvious differences between 
these types of populations are that metapopulations fea
ture extinction–(re)colonization dynamics. The genomic 
consequences of metapopulation ecology include recur
rent bottlenecks during population founding, which can 
lead to high genomic differentiation between subpopula
tions and low genomic diversity within subpopulations. 
Even though D. magna census population sizes may be 
large, bottlenecks cause low genomic diversity and strong 
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genetic drift, which in turn, reduces the efficacy of selection. 
This is seen as lowered rates of adaptive substitutions and 
elevated numbers of nonsynonymous relative to synonym
ous polymorphisms in the metapopulation compared with 
the single, large, and stable population. Our results support 
the expected differences between these population types 
and suggest that nondeterministic forces dominate the evo
lutionary process in dynamic metapopulations. Without the 
prior knowledge from the long-term survey of this metapo
pulation (Dubart et al. 2020; Ebert et al. 2013; Pajunen and 
Pajunen 2003; Walser and Haag 2012), it would be more dif
ficult to attribute the increased genetic drift to the observed 
metapopulation dynamics, because other processes, e.g., 
fluctuations in subpopulation size could also lead to a 
high genetic drift (Charlesworth et al. 2003). Our study 
does not only provide genomic insights into a well- 
documented metapopulation, but we also link genomics 
to subpopulation ecology, and thus, unravel the evolution
ary mechanisms of a metapopulation in a fragmented habi
tat. This provides valuable insights for conservation biology 
and helps to understand how metapopulations evolve dif
ferently from Wright–Fisher populations. Our findings are 
largely consistent with the propagule model of metapopu
lation evolution (Slatkin 1977) and provide a striking empir
ical example of such a metapopulation.
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