703 research outputs found

    The Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary

    Full text link
    We consider the dimer-monomer problem for the rectangular lattice. By mapping the problem into one of close-packed dimers on an extended lattice, we rederive the Tzeng-Wu solution for a single monomer on the boundary by evaluating a Pfaffian. We also clarify the mathematical content of the Tzeng-Wu solution by identifying it as the product of the nonzero eigenvalues of the Kasteleyn matrix.Comment: 4 Pages to appear in the Physical Review E (2006

    Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices

    Full text link
    The family of Vicsek fractals is one of the most important and frequently-studied regular fractal classes, and it is of considerable interest to understand the dynamical processes on this treelike fractal family. In this paper, we investigate discrete random walks on the Vicsek fractals, with the aim to obtain the exact solutions to the global mean first-passage time (GMFPT), defined as the average of first-passage time (FPT) between two nodes over the whole family of fractals. Based on the known connections between FPTs, effective resistance, and the eigenvalues of graph Laplacian, we determine implicitly the GMFPT of the Vicsek fractals, which is corroborated by numerical results. The obtained closed-form solution shows that the GMFPT approximately grows as a power-law function with system size (number of all nodes), with the exponent lies between 1 and 2. We then provide both the upper bound and lower bound for GMFPT of general trees, and show that leading behavior of the upper bound is the square of system size and the dominating scaling of the lower bound varies linearly with system size. We also show that the upper bound can be achieved in linear chains and the lower bound can be reached in star graphs. This study provides a comprehensive understanding of random walks on the Vicsek fractals and general treelike networks.Comment: Definitive version accepted for publication in Physical Review

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht

    Relationships between different sets involving group and Drazin projectors and nonnegativity

    Full text link
    This paper deals with nonnegativity of matrices and their group or Drazin inverses. Firstly, the nonnegativity of a square matrix A, its group inverse A# and its group projector AA# is used to define different sets for which relationships and characterizations are given. Next, an extension of the previous results for index greater than 1 is presented. Similar sets are introduced and studied for Drazin inverses and Drazin projectors considering the core-nilpotent decomposition. In addition, the results are applied to study the {l}-Drazin periodic matrices for l greater than or equal to 1.Herrero Debón, A.; Ramirez, FJ.; Thome, N. (2013). Relationships between different sets involving group and Drazin projectors and nonnegativity. Linear Algebra and its Applications. 438(4):1688-1699. doi:10.1016/J.LAA.2011.08.029S16881699438

    Composing and Factoring Generalized Green's Operators and Ordinary Boundary Problems

    Full text link
    We consider solution operators of linear ordinary boundary problems with "too many" boundary conditions, which are not always solvable. These generalized Green's operators are a certain kind of generalized inverses of differential operators. We answer the question when the product of two generalized Green's operators is again a generalized Green's operator for the product of the corresponding differential operators and which boundary problem it solves. Moreover, we show that---provided a factorization of the underlying differential operator---a generalized boundary problem can be factored into lower order problems corresponding to a factorization of the respective Green's operators. We illustrate our results by examples using the Maple package IntDiffOp, where the presented algorithms are implemented.Comment: 19 page

    Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere

    Get PDF
    Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of NN samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to JJ, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.Comment: 26 latex pages. Final version published in J. Fourier Anal. App

    Necessary conditions for variational regularization schemes

    Full text link
    We study variational regularization methods in a general framework, more precisely those methods that use a discrepancy and a regularization functional. While several sets of sufficient conditions are known to obtain a regularization method, we start with an investigation of the converse question: How could necessary conditions for a variational method to provide a regularization method look like? To this end, we formalize the notion of a variational scheme and start with comparison of three different instances of variational methods. Then we focus on the data space model and investigate the role and interplay of the topological structure, the convergence notion and the discrepancy functional. Especially, we deduce necessary conditions for the discrepancy functional to fulfill usual continuity assumptions. The results are applied to discrepancy functionals given by Bregman distances and especially to the Kullback-Leibler divergence.Comment: To appear in Inverse Problem

    Direct Interactions in Relativistic Statistical Mechanics

    Get PDF
    Directly interacting particles are considered in the multitime formalism of predictive relativistic mechanics. When the equations of motion leave a phase-space volume invariant, it turns out that the phase average of any first integral, covariantly defined as a flux across a 7n7n-dimensional surface, is conserved. The Hamiltonian case is discussed, a class of simple models is exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page
    corecore