217 research outputs found

    Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)

    Get PDF
    Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach

    Bridging the biodiversity data gaps: Recommendations to meet users’ data needs

    Get PDF
    A strong case has been made for freely available, high quality data on species occurrence, in order to track changes in biodiversity. However, one of the main issues surrounding the provision of such data is that sources vary in quality, scope, and accuracy. Therefore publishers of such data must face the challenge of maximizing quality, utility and breadth of data coverage, in order to make such data useful to users. Here, we report a number of recommendations that stem from a content need assessment survey conducted by the Global Biodiversity Information Facility (GBIF). Through this survey, we aimed to distil the main user needs regarding biodiversity data. We find a broad range of recommendations from the survey respondents, principally concerning issues such as data quality, bias, and coverage, and extending ease of access. We recommend a candidate set of actions for the GBIF that fall into three classes: 1) addressing data gaps, data volume, and data quality, 2) aggregating new kinds of data for new applications, and 3) promoting ease-of-use and providing incentives for wider use. Addressing the challenge of providing high quality primary biodiversity data can potentially serve the needs of many international biodiversity initiatives, including the new 2020 biodiversity targets of the Convention on Biological Diversity, the emerging global biodiversity observation network (GEO BON), and the new Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)

    The use of opportunistic data for IUCN Red List assessments

    Get PDF
    IUCN Red Lists are recognized worldwide as powerful instruments for the conservation of species. Quantitative criteria to standardize approaches for estimating population trends, geographic ranges and population sizes have been developed at global and sub-global levels. Little attention has been given to the data needed to estimate species trends and range sizes for IUCN Red List assessments. Few regions collect monitoring data in a structured way and usually only for a limited number of taxa. Therefore, opportunistic data are increasingly used for estimating trends and geographic range sizes. Trend calculations use a range of proxies: (i) monitoring sentinel populations, (ii) estimating changes in available habitat, or (iii) statistical models of change based on opportunistic records. Geographic ranges have been determined using: (i) marginal occurrences, (ii) habitat distributions, (iii) range-wide occurrences, (iv) species distribution modelling (including site-occupancy models), and (v) process-based modelling. Red List assessments differ strongly among regions (Europe, Britain and Flanders, north Belgium). Across different taxonomic groups, in European Red Lists IUCN criteria B and D resulted in the highest level of threat. In Britain, this was the case for criterion D and criterion A, while in Flanders criterion B and criterion A resulted in the highest threat level. Among taxonomic groups, however, large differences in the use of IUCN criteria were revealed. We give examples from Europe, Britain and Flemish Red List assessments using opportunistic data and give recommendations for a more uniform use of IUCN criteria among regions and among taxonomic groups

    Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data

    Get PDF
    Multi-species biodiversity indicators are increasingly used to assess progress towards the 2020 ‘Aichi’ targets of the Convention on Biological Diversity. However, most multi-species indicators are biased towards a few well-studied taxa for which suitable abundance data are available. Consequently, many taxonomic groups are poorly represented in current measures of biodiversity change, particularly invertebrates. Alternative data sources, including opportunistic occurrence data, when analysed appropriately, can provide robust estimates of occurrence over time and increase the taxonomic coverage of such measures of population change. Occupancy modelling has been shown to produce robust estimates of species occurrence and trends through time. So far, this approach has concentrated on well-recorded taxa and performs poorly where recording intensity is low. Here, we show that the use of weakly informative priors in a Bayesian occupancy model framework greatly improves the precision of occurrence estimates associated with current model formulations when analysing low-intensity occurrence data, although estimated trends can be sensitive to the choice of prior when data are extremely sparse at either end of the recording period. Specifically, three variations of a Bayesian occupancy model, each with a different focus on information sharing among years, were compared using British ant data from the Bees, Wasps and Ants Recording Society and tested in a simulation experiment. Overall, the random walk model, which allows the sharing of information between the current and previous year, showed improved precision and low bias when estimating species occurrence and trends. The use of the model formulation described here will enable a greater range of datasets to be analysed, covering more taxa, which will significantly increase taxonomic representation of measures of biodiversity change

    Long-term data for endemic frog genera reveal potential conservation crisis in the Bale Mountains, Ethiopia

    Get PDF
    Populations of many frogs have declined alarmingly in recent years, placing nearly one third of the >6,000 species under threat of extinction. Declines have been attributed largely to habitat loss, environmental degradation and/or infectious diseases such as chytridiomycosis. Many frogs undergo dramatic natural population fluctuations such that long-term data are required to determine population trends without undue influence of stochastic factors. We present long-term quantitative data (individuals encountered per person hour of searching) for four monotypic frog genera endemic to an Afromontane region of exceptional importance but growing conservation concern: one endemic to the Ethiopian highlands (Spinophrynoides osgoodi) and three endemic to the Bale Mountains (Altiphrynoides malcolmi, Balebreviceps hillmani, Ericabatrachus baleensis), collected during 15 field trips to the Bale Mountains between 1971 and 2009. Only a single confirmed sighting of S. osgoodi has been made since 1995. The other three species have also declined, at least locally. E. baleensis appears to have been extirpated at its type locality and at the same site B. hillmani has declined. These declines are in association with substantial habitat degradation caused by a growing human population. Chytrid fungus has been found on several frog species in Bale, although no dead or moribund frogs have been encountered. These results expose an urgent need for more amphibian surveys in the Bale Mountains. Additionally, we argue that detrimental human exploitation must be halted immediately in at least some parts of the Harenna Forest if a conservation crisis is to be averte

    Historical drivers of extinction risk: using past evidence to direct future monitoring

    Get PDF
    Global commitments to halt biodiversity decline mean that it is essential to monitor species' extinction risk. However, the work required to assess extinction risk is intensive. We demonstrate an alternative approach to monitoring extinction risk, based on the response of species to external conditions. Using retrospective International Union for Conservation of Nature Red List assessments, we classify transitions in the extinction risk of 497 mammalian carnivores and ungulates between 1975 and 2013. Species that moved to lower Red List categories, or remained Least Concern, were classified as ‘lower risk'; species that stayed in a threatened category, or moved to a higher category of risk, were classified as ‘higher risk'. Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species biology) and external conditions (human pressure, distribution state and conservation interventions). The model correctly classified up to 90% of all transitions and revealed complex interactions between variables, such as protected areas (PAs) versus human impact. The most important predictors were: past extinction risk, PA extent, geographical range size, body size, taxonomic family and human impact. Our results suggest that monitoring a targeted set of metrics would efficiently identify species facing a higher risk, and could guide the allocation of resources between monitoring species' extinction risk and monitoring external conditions
    corecore