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Summary 23 

Global commitments to halt biodiversity decline mean that it is essential to monitor species' 24 

extinction risk. However the work required to assess extinction risk is intensive. We demonstrate an 25 

alternative approach to monitoring extinction risk, based on the response of species to external 26 

conditions. Using retrospective IUCN Red List assessments, we classify transitions in the extinction 27 

risk of 497 mammalian carnivores and ungulates between 1975-2013. Species that moved to lower 28 

Red List categories, or remained Least Concern, were classified as "lower risk"; species that stayed 29 

in a threatened category, or moved to a higher category of risk, were classified as "higher risk". 30 

Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species 31 

biology) and external conditions (human pressure, distribution state, conservation interventions). 32 

The model correctly classified up to 90% of all transitions and revealed complex interactions 33 

between variables, e.g. protected areas vs human impact. The most important predictors were: past 34 

extinction risk, protected area extent, geographical range size, body size, taxonomic family, human 35 

impact. Our results suggest that monitoring a targeted set of metrics, would efficiently identify 36 

species facing a higher risk, and could guide the allocation of resources between monitoring species' 37 

extinction risk and monitoring external conditions. 38 

 39 
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Introduction 42 

 Despite a growing international commitment to conservation, the current biodiversity crisis 43 

is characterised by increasing human pressures and continuing decline in the status of many species 44 

and habitats [1]. Reversing this trend has become the aim of one of the ambitious Aichi biodiversity 45 

targets proposed for 2020 [2]: reducing the extinction risk of known threatened species. If this target 46 

is achieved, it will in turn have a positive synergistic effect other targets (such as the protection of 47 

forests and the maintenance of carbon stocks [3]). Progress towards meeting this global biodiversity 48 

target relies on monitoring the extinction risk of species. Over recent decades, the International 49 

Union for Conservation of Nature (IUCN) has assessed the extinction risk of more than 70,000 50 

species of plants, vertebrates and invertebrates on the Red List of Threatened species [4]. The 51 

classification of threatened species is clearly an effective conservation tool [5], with the IUCN Red 52 

List underpinning both international policy processes [2] and research aimed at improving 53 

conservation responses [6]. 54 

 However, classifying and monitoring species' extinction risk requires intensive expert effort 55 

and considerable financial resources, which is unsustainable without change in either the strategy 56 

for assessment or funding [7]. Approaches such as sampling of taxa can be used to provide short-57 

cuts, but it remains a substantial task [8]. Overall statistics from the IUCN Red List are used for 58 

measuring the status and trends of biodiversity [1,6] and for designing global-scale strategies for 59 

conservation interventions [9]. In addition, species-specific assessments inform direct actions to 60 

address particular threats at specific times and sites, requiring a comprehensive species-level 61 

approach [10]. 62 

 The extinction risk of species, assessed using the IUCN Red List criteria [11], is a 63 

consequence of their biological traits, past and current environmental conditions, direct human 64 

pressures and the interactions between these factors [12,13]. Environmental changes and pressures 65 

on species are increasing in intensity and are the main cause of current increases in extinction rates. 66 

Extinction risk modelling has been used to better represent and quantify these external drivers, 67 
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which can change and intensify over a short timeframe [14,15]. Biological traits by contrast change 68 

very slowly, and determine the way in which species respond to external pressures [13]. Historical 69 

information on species' extinction risk, and the way in which risk has changed in response to known 70 

pressures, could therefore be a good way to predict future biodiversity trends, particularly when the 71 

pressures can be effectively monitored or forecast. 72 

  Di Marco et al. undertook a retrospective assessment of the extinction risk of the world's 73 

carnivores and ungulates between 1975 and 2008 [16] by applying the current IUCN Red List 74 

criteria [11] to historical information. Studying past trends in extinction risk can indicate the 75 

circumstances under which conservation policies and strategies are or are not successful. 76 

Retrospective assessments can also guide the interpretation of future scenarios of emerging threats, 77 

for example, inferring the likely consequences of land use change or climate change [17]. 78 

Therefore, one approach to reducing the logistical and financial constraints of constant extinction 79 

risk monitoring could be to use well-validated models, based on past trends, to predict the effect of 80 

changing external pressures on future extinction risk [18,19]. 81 

 In many cases Red List categories remain stable over long periods of time, especially for the 82 

large number of species listed as Least Concern (LC) [11]. The most useful information therefore 83 

concerns those species whose extinction risk is likely to escalate. We use historical records to 84 

develop and refine models of change in extinction risk, to identify those species for which high-risk 85 

combinations of biological vulnerability and extrinsic threats occur. We use current [4] and 86 

historical [16] information on Red List categories for 497 species of mammalian carnivores and 87 

ungulates in the period 1975-2013, to represent "transitions" in species' extinction risk (Fig. 1). We 88 

classified species in two groups: "lower risk" transitions, for those species not facing a significant 89 

increase in their extinction risk over time, and "higher risk" transitions, for those species facing a 90 

significant increase in their extinction risk over time (see Methods and Table S1). This approach is 91 

not analogous to measuring ordinal transitions between Red List categories (e.g. [20]), since we 92 

deliberately highlight species that will be of greatest concern to conservation, namely those that 93 
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remain at a relatively high risk of extinction over time, and those that move from lower to higher 94 

risk categories. 95 

 We acknowledge that our study species are not a representative subset of all mammals, let 96 

alone life on earth. For example, carnivores and ungulates are generally characterised by longer 97 

generation times [21] and higher risk of extinction [4] relative to other mammals. Nonetheless the 98 

high conservation attention devoted to these groups makes a perfect case for testing our analytical 99 

approach. 100 

 We predicted higher and lower extinction risk transitions for species, using a comprehensive 101 

set of variables, which represent the conditions faced by the species during the study period. Our 102 

analyses therefore mimic a hypothetical situation in which relevant biological datasets and reliable 103 

forecast environmental and conservation metrics were available in the 1970s. This would have 104 

enabled conservation planners to predict which species would be in a higher or lower risk condition 105 

over the next 40 years.  106 

 107 

Methods 108 

Obtaining extinction risk transitions 109 

 We included all species of carnivores (Carnivora), ungulates (Perissodactyla and terrestrial 110 

Cetartiodactyla) and Proboscidea (discussed below together with ungulates) currently assessed in 111 

the IUCN Red List [4]. We excluded those species identified as being historically (<1970) extinct 112 

or Data Deficient (DD). We also excluded the Saudi gazelle (Gazella saudyia), declared extinct in 113 

the 1980s, since we had no detailed information available for its life history traits (apart from body 114 

mass) or spatial distribution. We considered 497 species in our analyses, representing 93% of all 115 

extant species in the study groups. 116 

 We compared the most recent species' extinction risk categories assessed in the IUCN Red 117 

List [11] with a retrospective assessment for 1975 [16]. We calculated an extinction risk transition 118 

value for each species between the two time periods in terms of the number of Red List categories 119 
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changed (Fig. 1). A negative transition (<0) characterised species that moved toward a lower 120 

category of risk, a stable transition (=0) characterised species that maintained the same Red List 121 

status, and a positive transition (>0) characterised species that moved toward a higher category of 122 

risk. 123 

 We considered changes in species' extinction risk over a c. forty-year period (1975-2013). 124 

This is a reasonable reference period for species in our study groups, as it corresponds to >10 125 

generations for small carnivores and ~2 generations for large bodied species such as elephants and 126 

rhinos [21]. 127 

 128 

Classifying extinction risk transitions 129 

 Because we were most interested in species that had fared unusually badly compared to 130 

those following an average trend over the study period, we identified species with a transition value 131 

significantly higher than random, when compared to other species within the same original 132 

extinction risk category. To do this we: (i) randomly re-assigned the observed transitions across all 133 

species within each original Red List category; (ii) compared the observed transitions with the 134 

randomly assigned transitions; (iii) repeated the previous steps 10,000 times. As an example, the 135 

transition of a species moving from LC (in 1975) to NT (in 2013) was higher than a transition 136 

randomly selected from other originally LC species in ~85% of the comparisons. Species with a 137 

transition value higher than random in ≤ 5% of the comparisons were included in the "lower risk" 138 

group. Species with a transition value higher than random in > 5% of the comparisons were 139 

included in the "higher risk" group. Importantly, a species retaining the same category over the time 140 

period (net change = 0) may have a transition value higher than random if several other species in 141 

the same original category had moved to lower categories of risk (net change < 0). 142 

 The randomization resulted in two groups containing species characterised by different 143 

extinction risk trajectories (Table S1). The "lower risk" group included species that were LC 144 
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throughout the study period, together with species that underwent a change from any category to a 145 

lower category of risk. The "higher risk" group included all species that underwent a change from 146 

any category to a higher category of risk, together with species that were originally threatened or 147 

near threatened and retained their category. This classification reflects the intrinsic properties of the 148 

Red List criteria, in particular the fact that remaining within the same Red List category has 149 

different implications depending upon the category. For example, a species classified as LC 150 

throughout the time period does not face any significant decline over time. In contrast, a species 151 

classified as Vulnerable (VU) throughout the time period faces a strong continuing decline in 152 

abundance (≥30%) and/or remains at a very low population size. The species in the latter case 153 

therefore has a much higher probability of extinction (≥ 10% in 100 years) [11]. 154 

 155 

Modelling the drivers of extinction risk transition 156 

 We modelled the probability that a species is included in the higher risk or in the lower risk 157 

group, based on its original extinction risk category and the conditions in place over the study 158 

period. Extinction risk has been shown previously to be attributable to a combination of intrinsic 159 

and extrinsic factors [13]. Following recent work [22], our model included three classes of external 160 

predictor variables and one class of intrinsic (biological) predictors (see Table 1 for a complete list 161 

and description). The external variables are intended to reflect conditions faced by the species 162 

during the study period. We measured: i) distribution state variables, such as species' range size 163 

(measured in orders of magnitude); ii) human pressure variables, such as the human influence index 164 

[23]; and iii) conservation response variables, measured as the proportional coverage and absolute 165 

extent of protected area (PAs) within species ranges (again the extent was measured as an order of 166 

magnitude). The fourth group of predictor variables reflects species life-history traits (i.e. species 167 

biology) including physical characteristics (e.g. body-size), reproductive timing (e.g. weaning age) 168 

and reproductive output (e.g. weight at birth) [24]. We used an existing dataset [25], in which 169 

multiple imputation techniques had been used to fill gaps in life-history data [26]. 170 
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 Obtaining measures of external predictor variables corresponding to exactly the same years 171 

as the assessment period was not always possible. Nonetheless most of these data refer to the 172 

second half of the study period (i.e. ≥ 1990s), where the highest decline in species status was 173 

observed [16]. We assumed that changes that occurred within a relevant part of the 40-year study 174 

period (especially the second half of the period) would serve as a valid approximation for the entire 175 

period. In addition, this reduces the risk of collinearity between predictor variables (including levels 176 

of habitat loss and other proxies of human pressure) and original threat status (derived from 177 

retrospective assessments of extinction risk in the 1960s-1970s). We decided to not include 178 

variables that could not reasonably be used as predictors of future extinction risk change. For 179 

example, measures related to species distribution such as biogeographical realm - while probably 180 

acting as a proxy for regional pressure levels - could not reasonably be used by conservation 181 

planners to predict future changes in extinction risk of species. 182 

 We used Random Forest modelling (RF) to estimate the probability that a species was 183 

included in the higher risk or in the lower risk group. RF modelling is a powerful tool for ecological 184 

analysis [27], and it has been successfully used to model extinction risk in mammals [28,29] and 185 

amphibians [30]. RF is a machine learning technique with a number of characteristics that make it 186 

suitable for extinction risk prediction [15], including: limited assumptions about data distributions, 187 

high classification stability and performance, and ability to cope with collinear predictors. In a 188 

recent test, RF showed the highest performance in predicting global mammal extinction risk among 189 

several machine learning methods [29]. Our model included several variables which are external to 190 

species biology (human pressures, habitat state, conservation responses), hence, in common with 191 

other studies [15], we did not include phylogenetic constrains into our analyses. However we tested 192 

whether this could influence our results by independently examining the effect of including 193 

taxonomy for predicting extinction risk [29].  194 

 We ran a full RF model, including all predictor variables, and ranked the variables according 195 

to their relative importance, i.e. their contribution to model's classification accuracy. Variable 196 
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importance, as well as the classification accuracy of the model, were calculated using an automated 197 

bootstrapped cross-validation procedure (implemented within the RF routine). During each iteration 198 

of the RF model, one third of the data were left out and used to cross-validate the classification 199 

ability of the model, see [31] for additional details. 200 

 Based on the final variable importance scores, we ran a series of partial RF models, each 201 

time including one additional variable following the variables' ranked importance. First we ran the 202 

model including only the most important variable, then added the second most important variable 203 

and re-ran the model, and so on until the last variable was included. We measured the performance 204 

of each partial RF model in terms of: proportion of correctly classified species (PCC), proportion of 205 

correctly classified higher risk species (sensitivity), proportion of correctly classified lower risk 206 

species (specificity), True Skill Statistic (TSS = sensitivity + specificity -1) [32]. 207 

 In order to account for the effect of including the original (1975) species Red List status in 208 

the model, we re-ran the full model after removing this variable. Because of its potential role in Red 209 

List assessments and its representation of past threat conditions [33], we also re-ran the model after 210 

removing species' range size (RangeSize). In this latter case, we also removed the variable 211 

representing extent of PA within the species range (RangeProtkm), as it has a weak positive 212 

correlation with range size (R2 = 0.56). We used degraded values of both range size and PA extent, 213 

i.e. order of magnitude rather than actual values (as for previous work [33]), to better represent the 214 

availability of coarse and approximate information during the study period. Finally, we built a 215 

single conditional inference classification tree to visually represent the interaction between 216 

predictor variables. 217 

 We adopted alternative classifications of extinction risk transitions and tested the 218 

performance of our model under different formats of the response variable. First, we repeated our 219 

RF modelling using ordinal changes in Red List categories as a numeric response variable (e.g. +2 220 

for a species moving from LC to VU; see also [20]). Second, we repeated our RF modelling after 221 

removing all species that did not change their Red List category between 1975-2013; in this case we 222 
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classified the remaining species in two categories: "uplisted" for species moving to higher 223 

extinction risk categories and "downlisted", for species moving to categories of lower risk. Third, 224 

we divided species in three groups: "LC to LC", including species remaining LC throughout the 225 

study period; "downlisted", including species that underwent a downlisting in their Red List 226 

category; "higher risk", following original classification already described. 227 

 The quantification of spatial variables was performed in GRASS GIS [34]. Statistical 228 

analyses were performed in R [35] using the packages 'randomForests' [31] and 'party' [36]. 229 

 230 

Results 231 

 Our classification of extinction risk resulted in 277 species being included in the lower risk 232 

group (55% of all species) and 220 species in the higher risk group (45% of species). The full RF 233 

model for classification of higher risk vs lower risk species performed well in cross-validation 234 

(Table 2): 89% of all species were correctly classified, with a sensitivity of 0.84, and a specificity of 235 

0.93 (TSS = 0.77). After removing the Red List category in 1975 from the model (i.e. the most 236 

important predictor), 82% of the species were still correctly classified, but the ability to correctly 237 

classify higher risk transitions was reduced (sensitivity = 0.78; TSS = 0.64). Subsequent removal of 238 

range size caused further deterioration in the model performance; although 79% of species were still 239 

correctly classified, there was a substantial reduction in sensitivity and TSS (sensitivity = 0.73; TSS 240 

= 0.57). 241 

 The six most important variables in the full RF model were: Red List category in 1975, PA 242 

extent (representing conservation response), range size (representing distribution state), body size 243 

(representing biology), family (representing taxonomy) and human impact index (representing 244 

human pressure) (Fig. 2A). A sequence of partial RF models, adding one variable at a time from the 245 

most important to the least important, showed that some of the variables had a contrasting effect on 246 

sensitivity and specificity. For example adding the taxonomic family to the model substantially 247 
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increased sensitivity, but reduced specificity. In contrast, adding the human influence index slightly 248 

increased both sensitivity and specificity. 249 

 The extinction risk transition of 87% of species could be correctly predicted from one 250 

variable alone (Red List category in 1975), highlighting the importance of knowing the initial 251 

condition when modelling changes in extinction risk. However this was biased toward lower risk 252 

species (specificity = 0.95 vs sensitivity = 0.78). Adding five additional variables did not 253 

substantially alter the overall classification ability, but improved the balance between specificity 254 

and sensitivity (Fig. 2A). Even after removing the Red List categories in 1975 from the model, the 255 

performance remained fairly good, but then several variables had to be included in order to 256 

correctly classify ~78% of the higher risk and ~86% of the lower risk species (Fig. 2B). Subsequent 257 

removal of range size required the use of >50% of all variables to achieve a sensitivity of ~73% and 258 

specificity of ~83% (Fig. S1). 259 

 A single conditional inference tree (Fig. 3), represents the interplay between correlates of 260 

extinction risk transitions. For example, species that were LC in 1975 had a much higher probability 261 

of being in the higher risk group if they had a relatively low coverage of PAs during the study 262 

period (<1,000 km2) and faced a substantial increase in human population density within their range 263 

(> 30%). 264 

 When changes in Red List categories were used as an ordinal numeric response variable, the 265 

following values were observed: -3 (n=1 species), -2 (n=3), -1 (n=11), 0 (n=369), +1 (n=79), +2 266 

(n=23), +3 (n=9), +4 (n=2). In this case the RF regression model performed poorly in terms of total 267 

variance explained (13%). The relative importance of variables in determining model performance 268 

was also different with respect to the importance measured in the transition classification model, 269 

with the 6 most important variables now being: forest cover change, family, human population 270 

change, generation length, age at first birth, proportion of protected areas (Fig S2). 271 

 When excluding species that did not undergo a change in their Red List category, our 272 

sample reduced to 15 down-listed and 113 up-listed species. The RF model then gave highly biased 273 
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results in this case, due to the high class imbalance, and classified all species as being uplisted (i.e. a 274 

complete imbalance toward sensitivity). The overall classification accuracy in this case was 275 

misleadingly high (88%), as the model was unable to predict improvement in species conservation 276 

status. 277 

 When dividing species into three groups, there were 15 downlisted species, 262 LC to LC 278 

species and 220 higher risk species. Here again, the overall classification accuracy of the model was 279 

high (89%), but  the predictive ability for the downlisted class was very low (only 1 correct 280 

prediction, Table S2). 281 

 282 

Discussion 283 

 By focusing on extinction risk transitions, we were able to distinguish between two groups 284 

of species. The higher risk group included species that remained at high extinction risk and those 285 

whose extinction risk increased between 1970 and 2010. The lower risk group included species that 286 

remained at, or improved their status to, low extinction risk during the same period. This 287 

classification is different from the Red List status, since it identifies species that are undergoing an 288 

unusual increase in extinction risk compared to other species that started the period in the same risk 289 

category. 290 

 We included candidate predictor variables from a range of classes (see Methods) and found 291 

that a small number of variables (from different classes) can efficiently predict the extinction risk 292 

transition of ungulates and carnivores. These variables have been highlighted previously [13,28] 293 

and include initial conservation status, certain biological traits (represented by body mass), levels of 294 

human encroachment, and the degree of conservation action (represented by PA coverage). The 295 

importance of considering conservation interventions in extinction risk modelling has already been 296 

demonstrated for Australian birds [20] and for African mammals [22], and we confirm it here in a 297 

global scale analysis. 298 
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 Our results show that the probability of a species being at higher risk was reduced by some 299 

adequate level of PAs coverage (one thousand km2 or more; Fig. 3), while it was increased by 300 

limited PA coverage and high levels of human pressure. To a first approximation this indicates the 301 

conditions under which PAs deliver positive conservation outcomes [37]. Monitoring the progress 302 

of PA expansion and the extent of human encroachment within species ranges can therefore be 303 

strategic. Future projections of these variables may be translated into global projection of species 304 

extinction risk, and allow for a proactive planning of conservation interventions [38]. 305 

 Our models  included measures of environmental change (e.g. the amount of suitable habitat 306 

for a species during the study period) and static measures of human impact (e.g. human influence 307 

index). These classes of variables were both important predictors in our model. Among general 308 

proxies of human pressures and habitat state, we also included information on levels of tree cover 309 

and tree cover change (see also [22]). While the role of these variables is probably more influential 310 

for forest-dependent than for non-forest species, it is known that habitat clearance has a contagious 311 

effect [39] and we use tree cover, a well mapped habitat feature at a global scale [40], to estimate 312 

the general condition of natural habitats within species ranges. 313 

 The extinction risk transition model performed well in cross validations, the classification 314 

ability was high for both lower risk and higher risk species. The availability of a dataset with 315 

retrospective extinction risk assessments [16] made it possible for us to validate our extinction risk 316 

model. This type of validation is common in other environmental science areas, and has been used 317 

to validate models of climate change effects on species distribution [41]. As our knowledge of past 318 

extinction risk improves, this approach could become standard practice in extinction risk modelling. 319 

 Unlike many previous studies, we did not convert IUCN Red List categories into numerical 320 

measures of extinction risk (e.g. LC to Extinct, from 0 to 5; [20,42]), or use extinction risk 321 

probabilities described in Red List Criterion E [43]. These involve assumptions about the 322 

relationship between categories and probability of extinctions that are not supported in theory or in 323 

practice [11]. We simply assumed that species in the higher risk group have higher conservation 324 



14 
 
 

requirements than those in the lower risk group, and found that predicting ordinal changes in Red 325 

List categories (as in [20]) was substantially less efficient than predicting extinction risk transitions. 326 

We also found that excluding those species with no change in their Red List category, or assigning 327 

stable LC species to a separate group, resulted in a biased allocation of model error with downlisted 328 

species being systematically misclassified. In this case the model is unable to predict the outcome of 329 

conservation success, i.e. those situations in which the extinction risk of a species is reduced over 330 

years. 331 

 Our results on the relative importance of different predictor variables can be used to identify 332 

priorities for future data gathering. We suggest that monitoring a set of such variables over time 333 

would allow conservationists to effectively anticipate future extinction risk. The accuracy of these 334 

predictions will rest on the assumption that these variables represent the drivers of transitions in 335 

species extinction risk. Our results demonstrates that this was the case for past extinction risk 336 

transitions, but the emergence (or the exacerbation) of new threats (such as climate change) would 337 

need to be accounted for to have a robust forecasting of extinction risk [17,44]. However, this  is 338 

not a weakness unique to our approach: threats to biodiversity change over time [45] and any model 339 

used to forecast extinction risk would require continuing updates and recalibration to account for 340 

emerging threats. Monitoring the emergence of new threats and the occurrence of rapid changes in 341 

external conditions will be necessary, yet even this would probably be easier than continuously 342 

assessing the extinction risk category of all species. 343 

 McCarthy et al. [20] investigated optimal investment strategies to prevent the extinction and 344 

minimise the number of threatened Australian birds, using conservation investments to model the 345 

probability of species moving between Red List categories. A similar approach could be combined 346 

with our modelling framework here, to measure the probability of undergoing a high risk transition. 347 

In this case the probability can be modelled as a function of the intrinsic and extrinsic conditions in 348 

place for the species, plus the conservation budget available. However, adequate information on 349 
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global conservation expenditure for threatened species needs to be available to reliably model the 350 

relationship between investments and status change. 351 

 Our approach can provide guidance on how to allocate resources among monitoring of 352 

species extinction risk and monitoring of external conditions, it can inform the identification of key 353 

variables to be monitored. There is great potential for the application of our approach to other taxa, 354 

especially considering the increasing availability of retrospective extinction risk assessments for 355 

groups such as amphibians [46] and corals [47], and the potential to use historical information to 356 

perform retrospective assessments for other groups [16]. 357 
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Table 1 Description of the variables used in the model. Variables are organised in different classes: 500 
human pressure (P), species biology (B), distribution state (D), conservation response (R). 501 
Examples of previous use of the variables for predicting extinction risk in terrestrial mammals, and 502 
the original data sources for each variables are also provided. 503 
 504 
Class Variable Description and justification Examples Source 

- 
Dependent 
variable 

Extinction risk transition as described in Table S1. 
 

[4,16] 

- RL75 
Red List category in 1975, representing original species status (i.e. 
extinction risk at the beginning of the study period). 

 
[16] 

P Acc_50 
Travel distance from major cities (accessibility), measured as the 
median value of the variable within species ranges (percentiles tested: 
5, 10, 20, 50). A proxy of human encroachment. 

[22,29] 
[48] 

P AOOloss 

Proportional loss of suitable habitat within species ranges (1970-2010). 
A proxy of the main driver of mammal species decline calculated from 
back casts of global land cover changes, from the IMAGE integrated 
assessment model [49]. 

[22] 

[50,51] 

P HII_5 
Human influence index, measured as the proportion of species ranges 
where the variable had values larger than 5 (values tested: 5, 10, 20). A 
proxy of the human impact on the environment. 

[22,29] 
[52] 

P HPD90_50 
Human population density in 1990, measured as the median value the 
variable within species ranges (percentiles tested: 5, 10, 20, 50). A 
proxy of human encroachment, 

[13,22,29] 
[53] 

P PopChange 
Proportional change in human population count in 1990-2010, 
measured as the mean value observed within species range. 

 
[54] 

P ForestCG 
Proportional change in forested habitat within species ranges between 
2000-2012. A proxy of natural habitat loss. 

 
[40] 

B AFB_d Age at first birth [24,25] [55] 

B BirthW Birth weight [22] [55] 

B BodySize Body mass [13,28,29] [55] 

B DietBrdth Number of dietary categories eaten by the species [22] [55] 

B InterbInt Interbirth interval [24] [55] 

B LitPY Litters per year  [55] 

B LitSiz Litter size [22,24,29] [55] 

B WeanAge Weaning age [13,24] [55] 

B Fam Taxonomic family  [4] 

B Ord Taxonomic order [13,22] [4] 

B GenLen Generation length [24] [21] 

B HabBrdth Number of habitat layers used by each species.  [55]  

D TreeCov_50 
Median tree cover within species range in 2000 (percentiles measured: 
5, 10, 20, 50). A proxy of forests state. 

 
[40] 

D Hab 
Species habitat preferences, classified as: forest, grassland, shrubland, 
bareland, coastal or generalist (when >1 of the previous applied). 

 
[51] 

D RangeSize 
Species range size, measured as an order of magnitude (e.g. 1 for 
ranges of 10-100 km2, 2 for ranges of 100-1000 km2, etc.). 

[13,22,28] 
[4] 

R 
RangeProt_prop 

Proportion of species range covered by protected areas with an IUCN 
category I to IV. 

[22] 
[56] 

R 
RangeProtkm 

Extent of protected areas within species ranges, measured as an order 
of magnitude (as described for "RangeSize") 

 
[56] 
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Table 2 Performance of the random forest models. The full model is compared with partial models, 505 
where the original species status (RL75) and the range size (RangeSize) were removed. 506 
 507 

Metric Full model RL75 removed RL75 and RangeSize removed* 
PCC† 0.89 0.82 0.79 

Sensitivity 0.84 0.78 0.73 
Specificity 0.93 0.86 0.84 

TSS‡ 0.77 0.64 0.57 
 508 

*When removing the variable RangeSize the extent of protected areas within the range was also 509 
removed, to avoid a potential surrogate effect. 510 
†PCC, proportion of correctly classified species. 511 
‡TSS, true skill statistics. 512 
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Figure legends 513 

 514 

Fig. 1 Transition of species' extinction risk categories in the period 1975-2013. The plot reports the 515 

number of species (carnivores and ungulates) in each Red List category for each time period. 516 

Circles' size is proportional to the number of species while arrows represent the proportion of 517 

species moving from an initial category to a final category (arrows' width scales with the proportion 518 

of species in the original category). Data were obtained from [4,16]. 519 

 520 

Fig. 2 Performance of extinction risk models with an increasing number of variables, considering 521 

all variables (A) or all variables apart from original status (B). Variables are added iteratively to the 522 

models, from left to right according to their ranked importance in the original full model. Each 523 

series of symbols (y-axis) represents the specificity (spec) or sensitivity (sens) of a model that 524 

included the variables on its left or below it (x axis). 525 

 526 

Fig. 3 Conditional inference classification tree for extinction risk transition. Each terminal node 527 

reports (in dark grey) the proportion of higher risk species. See Table 1 for a description of the 528 

variables. 529 

 530 
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