202 research outputs found

    2,2,7-Trichloro-3,4-dihydro­naphthalen-1(2H)-one

    Get PDF
    The title compound, C10H7Cl3O, obtained as a major byproduct from a classical Schmidt reaction. The cyclohexyl ring is distorted from a classical chair conformation, as observed for monocyclic analogues, presumably due to conjugation of the planar annulated benzo ring and the ketone group (r.m.s. deviation 0.024 Å). There are no significant intermolecular interactions

    8-Chloro-5-(4-phenethylpiperazin-1-­yl)pyrido[2,3-b][1,5]benzoxazepine

    Get PDF
    As part of an anti­psychotic drug discovery program, we report the crystal structure of the title compound, C24H23ClN4O. The mol­ecule has a tricyclic framework with a characteristic buckled V-shaped pyridobenzoxazepine unit, with the central seven-membered heterocycle in a boat configuration. The piperazine ring displays a chair conformation with the 2-phenyl-ethyl substituent assuming an equatorial orientation. There are two crystallographically independent, but virtually identical, mol­ecules in the asymmetric unit

    Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor

    Get PDF
    We recently described a structurally novel series of negative allosteric modulators (NAMs) of the dopamine D2 receptor (D2R) based on thieno[2,3-d]pyrimidine 1, showing it can be structurally simplified to reveal low molecular weight, fragment-like NAMs that retain robust negative cooperativity, such as 3. Herein, we report the synthesis and functional profiling of analogues of 3, placing specific emphasis on examining secondary and tertiary amino substituents at the 4-position, combined with a range of substituents at the 5/6-positions (e.g. aromatic/aliphatic carbocycles). We identify analogues with diverse pharmacology at the D2R including NAMs (19fc) with sub-?M affinity (9h) and, surprisingly, low efficacy partial agonists (9d and 9i)

    Di-tert-butyl N-[2,6-bis­(methoxy­meth­oxy)phen­yl]imino­diacetate

    Get PDF
    The title mol­ecule, C20H31NO8, has pseudo-C2 symmetry about the C—N bond, with the bis­(tert-butoxy­carbon­yl)amino group twisted from the benzene ring plane by ca 60° and the bulky tert-butoxy­carbonyl (Boc) groups are orientated away from the substituted aniline group. As part of an anti­bacterial drug discovery programme furnishing analogues of platensimycin, we unexpectedly synthesized the bis-Boc-protected aniline

    A economia argentina no governo de Mauricio Macri

    Get PDF
    O artigo discute as perspectivas para as eleições argentinas, em 2019.Em primeiro plano, pessoas caminhando em uma praça. Ao fundo, a Casa Rosada, sede da presidência da república argentina, em Buenos Aires

    Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor

    Get PDF
    Haloperidol is a typical antipsychotic drug (APD) associated with an increased risk of extrapyramidal side-effects (EPS) and hyperprolactinemia relative to atypical APDs such as clozapine. Both drugs are dopamine D2 receptor (D2R) antagonists, with contrasting kinetic profiles. Haloperidol displays fast association/slow dissociation at the D2R whereas clozapine exhibits relatively slow association/fast dissociation. Recently, we have provided evidence that slow dissociation from the D2R predicts hyperprolactinemia, whereas fast association predicts EPS. Unfortunately, clozapine can cause severe side-effects independent of its D2R action. Our results suggest an optimal kinetic profile for D2R antagonist APDs that avoids EPS. To begin exploring this hypothesis, we conducted a structure-kinetic relationship study of haloperidol and reveal that subtle structural modifications dramatically change binding kinetic rate constants, affording compounds with a clozapine-like kinetic profile. Thus, optimisation of these kinetic parameters may allow development of novel APDs based on the haloperidol scaffold with improved side-effect profiles

    Novel fused arylpyrimidinone based allosteric modulators of the M1 muscarinic acetylcholine receptor

    Get PDF
    Benzoquinazolinone 1 is a positive allosteric modulator (PAM) of the M1 muscarinic acetylcholine receptor (mAChR), which is significantly more potent than the prototypical PAM, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline- 3-carboxylic acid (BQCA). In this study, we explored the structural determinants that underlie the activity of 1 as a PAM of the M1 mAChR. We paid particular attention to the importance of the tricyclic scaffold of compound 1, for the activity of the molecule. Complete deletion of the peripheral fused benzene ring caused a significant decrease in affinity and binding cooperativity with acetylcholine (ACh). This loss of affinity was rescued with the addition of either one or two methyl groups in the 7- and/or 8-position of the quinazolin-4(3H)-one core. These results demonstrate that the tricyclic benzo[h]quinazolin-4(3H)-one core could be replaced with a quinazolin-4(3H)-one core and maintain functional affinity. As such, the quinazolin-4(3H)-one core represents a novel scaffold to further explore M1 mAChR PAMs with improved physicochemical properties

    4-Phenylpyridin-2-one derivatives: a novel class of positive allosteric modulator of the M1 muscarinic acetylcholine receptor

    Get PDF
    Positive allosteric modulators (PAMs) of the M1 muscarinic acetylcholine receptor (M1 mAChR) are a promising strategy for the treatment of the cognitive deficits associated with diseases including Alzheimer’s and schizophrenia. Herein, we report the design, synthesis, and characterization of a novel family of M1 mAChR PAMs. The most active compounds of the 4-phenylpyridin-2-one series exhibited comparable binding affinity to the reference compound, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (BQCA) (1), but markedly improved positive cooperativity with acetylcholine, and retained exquisite selectivity for the M1 mAChR. Furthermore, our pharmacological characterization revealed ligands with a diverse range of activities, including modulators that displayed both high intrinsic efficacy and PAM activity, those that showed no detectable agonism but robust PAM activity and ligands that displayed robust allosteric agonism but little modulatory activity. Thus, the 4-phenylpyridin-2-one scaffold offers an attractive starting point for further lead optimization

    Assessment of the molecular mechanisms of action of novel 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one allosteric modulators at the M1 muscarinic acetylcholine receptors

    Get PDF
    Positive allosteric modulators (PAMs) that target the M1 muscarinic acetylcholine (ACh) receptor (M1 mAChR) are potential treatments for cognitive deficits in conditions such as Alzheimer's disease and schizophrenia. We recently reported novel 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one M1 mAChR PAMs with the potential to display different modes of positive allosteric modulation and/or agonism (Mistry et al., 2016), but their molecular mechanisms of action remain undetermined. The current study compared the pharmacology of three such novel PAMs with the prototypical first-generation PAM, BQCA, in a recombinant Chinese hamster ovary (CHO) cell line stably expressing the human M1 mAChR. Interactions between the orthosteric agonists and the novel PAMs or BQCA suggested their allosteric effects were solely governed by modulation of agonist affinity. The greatest degree of positive co-operativity was observed with higher efficacy agonists, whereas minimal potentiation was observed when the modulators were tested against the lower efficacy agonist, xanomeline. Each PAM was investigated for its effects on the endogenous agonist, ACh, on three different signalling pathways, (ERK1/2 phosphorylation, IP1 accumulation and β-arrestin-2 recruitment), revealing that the allosteric potentiation generally tracked with the efficiency of stimulus-response coupling and that there was little pathway bias in the allosteric effects. Thus, despite the identification of novel allosteric scaffolds targeting the M1 mAChR, the molecular mechanism of action of these compounds is largely consistent with a model of allostery previously described for BQCA, suggesting that this may be a more generalized mechanism for M1 mAChR PAM effects than previously appreciated
    corecore