34 research outputs found

    Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies

    Get PDF
    The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires a-helical conformation, the helix spanning residues 3-11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide: lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential () of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. the mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism. (C) 2014 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institut Nacional de Ciencia e Tecnologia de fluidos complexos (INCTFCx)Nude de Apoio Pesquisa de Fluidos Complexos (NAPFCx)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ São Paulo, Inst Chem, Dept Biochem, BR-05513970 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, BR-04044020 São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Med Biochem, Nucl Magnet Resonance Natl Ctr, Rio de Janeiro, BrazilEmbrapa Recursos Genet & Biotecnol, BR-70770917 Brasilia, DF, BrazilUniversidade Federal de São Paulo, Dept Biophys, BR-04044020 São Paulo, BrazilFAPESP: 2007/50970-5FAPESP: 2013/08166-5Web of Scienc

    Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    Get PDF
    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.PMC524437

    In Silico, In Vitro and In Vivo Toxicological Assessment of BPP-BrachyNH2, A Vasoactive Proline-Rich Oligopeptide from Brachycephalus ephippium

    Get PDF
    BPP-BrachyNH2 is a proline-rich oligopeptide (PRO) firstly identified in skin secretion of the frog Brachycephalus ephippium, which possess in vitro inhibitory activity of angiotensin-I converting enzyme (ACE) and endothelium-dependent vasorelaxant activity. Considering its potential application in the treatment of cardiovascular diseases, the present work assessed the toxicological profile of the BPP-BrachyNH2. The in silico toxicity prediction was performed from the best model obtained through the optimization of the FASTA query peptide. This prediction study revealed that BPP-BrachyNH2 induced high predicted LD50 values for both humans and rats, and then is well-tolerated in the recommended range. The MTT assay was applied for the in vitro cytotoxic evaluation in murine macrophages. In this assay, a decrease of cell viability was not observed. The in vivo acute toxicological study was performed after the intraperitoneal administration of BPP-BrachyNH2 at doses of 5 and 50 mg/kg. After intraperitoneal administration, no death, alterations in behavioral parameters or weight gain curve was observed, as well as none in the serum biochemical parameters, and gross pathological and histopathological analyses. These observations demonstrates an acceptable safety profile for BPP-BrachyNH2, leading towards further studies focused on investigation of pharmacological and therapeutical applications for this peptide.info:eu-repo/semantics/publishedVersio

    Tryptophan photooxidation promoted by new hybrid materials prepared by condensation of naphthalene imides with silicate by the sol-gel process

    Get PDF
    Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.FAPESP[04/15069-7]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CAPESCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNP

    Influence of season, environment and feeding habits on the enzymatic activity of peptidase and β-glucosidase in the gastrointestinal tract of two Siluriformes fishes (Teleostei)

    No full text
    The enzymatic activities involved in the digestion of proteins and carbohydrates were compared among three organs of the digestive track of two Siluriformes fish species, and between two areas: a reservoir, and an area downriver of it. Our aim was to test the hypothesis that the digestive organs of species with varied feeding habits have different enzymatic activities, and that the enzymatic activity differs among seasons and environmental conditions. The iliophagous/herbivorous species Hypostomus auroguttatus Kner, 1854 had higher trypsin-like, chymotrypsin-like peptidase and β-glucosidase activity in the intestine when compared with the omnivorous species Pimelodus maculatus Lacepède, 1803, whereas the latter had more hepatic trypsin-like activity than the former. The peak of activity of the three enzymes in H. auroguttatus was recorded in the winter and spring. On the other hand, P. maculatus tended to have the more prominent peptidase and β-glucosidase activity in the summer, and the smallest in the winter. The intestine of H. auroguttatus had higher enzymatic (trypsin, chymotrypsin and β-glucosidase) activity than the stomach and the liver. For P. maculatus, the highest β-glucosidase activity was found in the liver. The enzymatic activity of H. aurogutattus did not differ between lotic and lentic systems, whereas P. maculatus had comparatively higher stomach and hepatic trypsin levels and hepatic chymotrypsin-like activities in the reservoir than down in the river. These findings indicate that, in H. auroguttatus, most digestive activity occurs in the intestine, which is long and adapted for the digestion of bottom-river vegetable matter and detritus. The seasons and the type of the system (lentic vs. lotic) seem to affect the enzymatic activity for these two species differently, a likely consequence of their different lifestyles

    Activity of Debaryomyces hansenii UFV-1 a-galactosidases against a-D-galactopyranoside derivatives

    No full text
    α-d-Galactopyranosides were synthesized and their inhibitory activities toward the Debaryomyces hansenii UFV-1 extracellular and intracellular α-galactosidases were evaluated. Methyl α-d-galactopyranoside was the most potent inhibitor compared to the others tested, with values of 0.82 and 1.12 mmol L−1, for extracellular and intracellular enzymes, respectively. These results indicate that the presence of a hydroxyl group in the C-6 position of α-d-galactopyranoside derivatives is important for the recognition by D. hansenii UFV-1 α-galactosidases

    Dragging Human Mesenchymal Stem Cells with the Aid of Supramolecular Assemblies of Single-Walled Carbon Nanotubes, Molecular Magnets, and Peptides in a Magnetic Field

    Get PDF
    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy
    corecore